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Outline

I Today
1. Proximal Newton-type methods.
2. Composite self-concordant minimization

I Next week
1. Sourse separation
2. Convex geometry of linear inverse problems
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Recommended reading material

I A. Beck and M. Tebulle, A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems, SIAM J. Imaging Sciences, 2(1), 183–202, 2009.

I Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program,
103(1), 127–152, 2005.

I Q. Tran-Dinh, A. Kyrillidis and V. Cevher, Composite Self-Concordant
Minimization, LIONS-EPFL Tech. Report. http://arxiv.org/abs/1308.2867,
2013.

I N. Parikh and S. Boyd, Proximal Algorithms, Foundations and Trends in
Optimization, 1(3):123-231, 2014.
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Motivation

Motivation
Data analytics problems in various disciplines can often be simplified to nonsmooth
composite convex minimization problems. To this end, this lecture provides efficient
numerical solution methods for such problems.

Intriguingly, composite minimization problems are far from generic nonsmooth
problems and we can exploit individual function structures to obtain numerical
solutions nearly as efficiently as if they are smooth problems.
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Composite convex minimization

Problem (Unconstrained composite convex minimization)

F ? := min
x∈Rp

{F (x) := f(x) + g(x)} (1)

I f and g are both proper, closed, and convex.
I dom(F ) := dom(f) ∩ dom(g) , ∅ and −∞ < F ? < +∞.
I The solution set S? := {x? ∈ dom(F ) : F (x?) = F ?} is nonempty.
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How can we better adapt to the local geometry?
Non-adaptive:

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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How can we better adapt to the local geometry?
Line-search:

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally
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How can we better adapt to the local geometry?
Variable metric:

�f(xk)

x1

x2 f(x)  f(xk) +rf(xk)T (x� x

k) +
L

2
kx� x

kk22

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

H�1
k

L is a global worst-case constant

krf(x)�rf(y)k  Lky � xk

f(x)

x

k+1 = argmin
x

⇢
f(xk) + hrf(xk),x� x

ki+ L

2
kx� x

kk22
�

f(xk)
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The idea of the proximal-Newton method

Assumptions A.2
Assume that f ∈ F2,1

L,µ(Rp) and g ∈ Fprox(Rp).

The idea of proximal-Newton method

I Under Assumptions A.2, we can linearize the smooth term of the optimality
condition of (1): 0 ∈ ∇f(x?) + ∂g(x?) as

0 ∈ ∇f(x?) + ∂g(x?) ≈ ∇f(xk) +∇2f(xk)T (x? − xk) + ∂g(x?).

I Similar to the classical Newton method in Lecture 3, we can generate an iterative
sequence {xk}k≥0 by solving the inclusion:

0 ∈ ∇f(xk) +∇2f(xk)T (x− xk) + ∂g(x) (2)

to obtain xk+1.
I The last condition is equivalent to

xk+1 := arg min
x∈Rp

{1
2

(x−xk)T∇2f(xk)(x−xk)+∇f(xk)T (x−xk)+g(x)
}
. (3)
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Proximal-Newton-type scheme

I The sequence {xk} generated by (3) is not necessarily convergent. Hence, a
sufficient descent condition is required.

I We can replace ∇2f(xk) by a given approximate matrix Hk.

Proximal-quasi-Newton-type algorithms:
I Let Hk ≈ ∇2f(xk) be a symmetric positive definite (SDP) matrix. From (2), we
have

xk −H−1
k
∇f(xk) ∈ (I+ H−1

k
∂g)(x),

which leads to
xk+1 := proxH−1

k
g

(
xk −H−1

k
∇f(xk)

)
. (4)

I By letting dk := xk+1 − xk, (4) is equivalent to

dk := arg min
d∈Rp

{1
2

dTHkd +∇f(xk)Td + g(xk + d)
}
. (5)

Then dk is called a proximal-Newton-type direction.
I Proximal-Newton-type algorithm generates a sequence {xk}k≥0 starting from

x0 ∈ Rp and update:
xk+1 := xk + αkdk, (6)

where dk is given by (5) and αk ∈ (0, 1] is a damped step-size.
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How to find step size αk?

Lemma (Descent lemma [5])
Let xk(α) := xk + αdk for sufficiently small α ∈ (0, 1] and Hk � 0. Then, we have:

F (xk(α)) ≤ F (xk)− (1/2)α(dk)THkdk +O(α2).

Since Hk � 0, this lemma tells us that:
I If dk , 0, then there exists α > 0 such that F (xk(α)) < F (xk).
I The value of α can be computed via backtracking line search.
I If dk = 0, then we can easily check that xk is a solution of (1).

Backtracking line-search

I Let
rk := ∇f(xk)Tdk + g(xk + dk)− g(xk).

I Find the smallest integer number j ≥ 0 such that αk := βj and

F (xk + αkdk) ≤ F (xk) + cαkrk, (7)

where c ∈ (0, 0.5] and β ∈ (0, 1) are two given constants (e.g., c = 0.1 and
β = 0.5).
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The proximal-Newton-type algorithm
We can summary the proximal-Newton-type method as follows:

Proximal-Newton algorithm (PNA)
1. Given x0 ∈ Rp as a starting point. Choose c := 0.1 and
β := 0.5
2. For k = 0, 1, · · · , perform the following steps:
2.1. Evaluate an SDP matrix Hk ≈ ∇2f(xk) and ∇f(xk).

2.2. Compute dk := proxH−1
k
g

(
xk −H−1

k
∇f(xk)

)
− xk.

2.3. Find the smallest integer number j ≥ 0 such that

F (xk + βjdk) ≤ F (xk) + cβjrk

and set αk := βj .
2.4. Update xk+1 := xk + αkdk.

I If Hk ≡ ∇2f(xk), then PNA becomes a pure proximal-Newton algorithm.
I If Hk ≈ ∇2f(xk), then PNA becomes a proximal-quasi-Newton algorithm.
I Main computation is Step 2.2, which requires a generalized prox-operator:

proxH−1
k
g

(
xk + H−1

k
∇f(xk)

)
.

I Let g(x) = ρ‖x‖1. When Hk is not diagonal, the cost is the same as solving an
`1-regularized least squares, otherwise it is simply soft thresholding.
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Convergence analysis

Assumption A.3.
I Problem (1): minx{F (x) := f(x) + g(x)} admits a solution x?.

I The subproblem proxH−1
k
g

(
xk + H−1

k
∇f(xk)

)
is solved exactly for all k ≥ 0.
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k
g

(
xk + H−1

k
∇f(xk)

)
is solved exactly for all k ≥ 0.

Theorem (Global convergence [5])
Assumptions:
I The sequence {xk}k≥0 is generated by PNA.
I Assumption A.3. is satisfied.
I There exists µ > 0 such that Hk � µI for all k ≥ 0.

Conclusion:
I {xk}k≥0 globally converges to a solution x? of (1).

I We have not yet obtained a global convergence rate of proximal-Newton
methods.
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Convergence analysis
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I Problem (1): minx{F (x) := f(x) + g(x)} admits a solution x?.

I The subproblem proxH−1
k
g

(
xk + H−1

k
∇f(xk)

)
is solved exactly for all k ≥ 0.

Theorem (Local convergence [5])
Assumptions:
I The sequence {xk}k≥0 is generated by PNA.
I Assumption A.3. is satisfied.
I Exist 0 < µ ≤ L2 < +∞ such that µI � Hk � L2I for all sufficiently large k.

Conclusion:
I If Hk ≡ ∇2f(xk), then αk = 1 for k sufficiently large (full-step).
I If Hk ≡ ∇2f(xk), then {xk} locally converges to x? at a quadratic rate.
I If Hk satisfies the Dennis-Moré condition:

lim
k→+∞

‖(Hk −∇2f(x?))(xk+1 − xk)‖
‖xk+1 − xk‖

= 0, (8)

then {xk} locally converges to x? at a super linear rate.
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How to compute the approximation Hk?

I Solving proxH−1
k
g

(
xk + H−1

k
∇f(xk)

)
exactly for a non-diagonal matrix Hk is

impractical.
I This problem is solved iteratively by using, e.g., FISTA except for the special
cases of Hk.

How to update Hk?
Matrix Hk can be updated by using low-rank updates.
I BFGS update: maintain the Dennis-Moré condition and Hk � 0.

Hk+1 := Hk +
ykyTk
sT
k

yk
−

HksksTk Hk

sT
k

Hksk
, H0 := γI, (γ > 0).

where yk := ∇f(xk+1)−∇f(xk) and sk := xk+1 − xk.
I Diagonal+Rank-1 [2]: computing PN direction dk is in polynomial time, but it
does not maintain the Dennis-Moré condition:

Hk := Dk + ukuTk , uk := (sk −H0yk)/
√

(sk −H0yk)Tyk,

where Dk is a positive diagonal matrix.
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Advantages and disadvantages

Advantages
I PNA has fast local convergence rate (super-linear or quadratic)
I Numerical robustness under the inexactness/noise (inexact proximal-Newton
method [5]).

I Quasi-Newton method is useful if the evaluation of ∇2f is expensive.
I Suitable for problems with many data points but few parameters. For example,
problems of the form:

F ∗ := min
x∈Rp

{
n∑
j=1

`j(aTj x + bj) + g(x)

}
,

where `j is twice continuously differentiable and convex, g ∈ Fprox, p� n.

Disadvantages
I Expensive iteration compared to proximal-gradient methods.
I Global convergence rate may be worse than accelerated proximal-gradient
methods.

I Requires a good initial point to get fast local convergence, which is hard to find.
I Requires strict conditions for global/local convergence analysis.
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Example 1: Sparse logistic regression

Problem (Sparse logistic regression)
Given a sample vector a ∈ Rp and a binary class label vector b ∈ {−1,+1}n. The
conditional probability of a label b given a is defined as:

P(b|a,x, µ) = 1/(1 + e−b(xT a+µ)),

where x ∈ Rp is a weight vector, µ is called the intercept.
Goal: Find a sparse-weight vector x via the maximum likelihood principle.

Optimization formulation

min
x∈Rp

{ 1
n

n∑
i=1

L(bi(aTi x + µ))︸                             ︷︷                             ︸
f(x)

+ ρ‖x‖1︸  ︷︷  ︸
g(x)

}
, (9)

where ai is the i-th row of data matrix A in Rn×p, ρ > 0 is a regularization
parameter, and ` is the logistic loss function L(τ) := log(1 + e−τ ).
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Example: Sparse logistic regression

Real data
I Real data: w2a with n = 3470 data points, p = 300 features
I Available at

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters
I Tolerance 10−6.
I L-BFGS memory m = 50.
I Ground truth: Get a high accuracy approximation of x? and f? by TFOCS with
tolerance 10−12.
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Example: Sparse logistic regression-Numerical results
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Example 2: `1-regularized least squares

Problem (`1-regularized least squares)
Given A ∈ Rn×p and b ∈ Rn, solve:

F ? := min
x∈Rp

{
F (x) :=

1
2
‖Ax− b‖22 + ρ‖x‖1

}
, (10)

where ρ > 0 is a regularization parameter.

Complexity per iterations

I Evaluating ∇f(xk) = AT (Axk − b) requires one Ax and one ATy.
I One soft-thresholding operator proxλg(x) = sign(x)⊗max{|x| − ρ, 0}.
I Optional: Evaluating L = ‖ATA‖ (spectral norm) - via power iterations (e.g.,

20 iterations, each iteration requires one Ax and one ATy).

Synthetic data generation

I A := randn(n, p) - standard Gaussian N (0, I).
I x? is a s-sparse vector generated randomly.
I b := Ax? +N (0, 10−3).
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Example 2: `1-regularized least squares - Numerical results - Trial 1

Parameters: n = 750, p = 2000, s = 200, ρ = 1

0 500 1000 1500 2000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of iterations

(F
(x

k
)
−

F
⋆
)/
F

⋆
in

lo
g
sc
al
e

 

 

Quasi-Newton with diagonal+rank1
Accelerated gradient method
AGD with restart
Line search AGD with restart

0 2 4 6 8 10 12
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Time (s)

(F
(x

k
)
−

F
⋆
)/
F

⋆
in

lo
g
sc
al
e

 

 

Quasi-Newton with diagonal+rank1
Accelerated gradient method
AGD with restart
Line search AGD with restart

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 47



Example 2: `1-regularized least squares - Numerical results - Trial 2

Parameters: n = 750, p = 2000, s = 200, ρ = 1
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Outline

I Today
1. Proximal Newton-type methods.
2. Composite self-concordant minimization

I Next week
1. Sourse separation
2. Convex geometry of linear inverse problems
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Composite self-concordant minimization
Composite self-concordant minimization (CSM) problem [11]

F ? := min
x∈dom(F )

{
F (x) := f(x) + g(x)

}
, (11)

I f ∈ F2(dom(f)) - self-concordant on dom(f) := {x ∈ Rp : f(x) < +∞}
I g ∈ Fprox(Rp)
I dom(F ) := dom(f) ∩ dom(g)

Why is composite self-concordant minimization?
I A self-concordant function is not necessarily Lipschitz gradient.

L � Lipschitz gradient

µ � strongly convex Self-concordant

Wednesday, June 18, 14

I Covers many well-known examples.
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Self-concordant functions in higher dimensions

Definition (Self-concordant functions [7, 6])
I A function f : Rn → R is said to be self-concordant with parameter M ≥ 0 if

|ϕ′′′(t)| ≤Mϕ′′(t)3/2,

where ϕ(t) := f(x + tv) for all t ∈ R, x ∈ dom(f) and v ∈ Rn and
x + tv ∈ dom(f).

I When M = 2, the function f is said to be a standard self-concordant.
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I When M = 2, the function f is said to be a standard self-concordant.

Example
The function f(x) = − log x is self-concordant. To see this, observe:

f ′′(x) = 1/x2, f ′′′(x) = −2/x3.

Thus:

|f ′′′(x)|
2f ′′(x)3/2 =

2/x3

2(1/x2)3/2 = 1
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Self-concordant functions in higher dimensions

Definition (Self-concordant functions [7, 6])
I A function f : Rn → R is said to be self-concordant with parameter M ≥ 0 if

|ϕ′′′(t)| ≤Mϕ′′(t)3/2,

where ϕ(t) := f(x + tv) for all t ∈ R, x ∈ dom(f) and v ∈ Rn and
x + tv ∈ dom(f).

I When M = 2, the function f is said to be a standard self-concordant.

Example
Similarly, the following example functions are self-concordant
1. f(x) = x log x− log x,
2. f(x) =

∑m

i=1 log(bi − aTi x) with domain
dom(f) =

{
x : aTi x < bi, i = 1, . . . ,m

}
,

3. f(X) = − log det(X) with domain dom(f) = S++
n ,

4. f(x) = − log
(

xTPx + qTx + r
)
with domain

dom(f) =
{

x : xTPx + qTx + r > 0
}

and −P ∈ S++
n .

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 47



Two well-known examples

Graphical model selection

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f(x)

+ ρ‖vec(Θ)‖1︸           ︷︷           ︸
g(x)

}
(12)

where Θ � 0 means that Θ is symmetric and positive definite and ρ > 0 is a
regularization parameter and vec is the vectorization operator.

Poisson imaging reconstruction (with TV-norm regularizer)

min
x∈Rn×p

{ n∑
i=1

(Kx)i −
n∑
i=1

yi log((Kx)i)︸                                          ︷︷                                          ︸
f(x)

+ ρ‖x‖TV︸     ︷︷     ︸
g(x)

}
(13)

I K is a linear operator, y = (y1, . . . , yn)T ∈ Zn+ is the observed vector of photon
counts.

I ρ > 0 is a regularization parameter,
I ‖x‖TV is the TV-norm of x (see the above example).
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Some geometric intuition behind self-concordant functions
Local norm

Self-concordance vs. Lipschitz gradient + SC

• Main properties of 

x,y 2 dom(f)Lower surrogate

Upper surrogate

Hessian surrogates (1 � ky � xkx)2r2f(x) � r2f(y) � (1 � ky � xkx)�2r2f(x)

f(y)  f(x) + rf(x)T (y � x) + !⇤ (ky � xkx)

f(y) � f(x) + rf(x)T (y � x) + ! (ky � xkx)

ky � xkx < 1

ky � xkx < 1

F2

Local

Local norm:   

Utility functions:   

kukx :=
⇥
uTr2f(x)u

⇤1/2

!⇤(⌧) = �⌧ � ln(1 � ⌧), ⌧ 2 [0, 1) !(⌧) = ⌧ � ln(1 + ⌧), ⌧ � 0

f is self-concordant if '(t) := f(x + td) satisfies |'000(t)|  2'00(t)3/2 for all x and d.

Friday, May 30, 14

Basic properties [6]

Self-concordance vs. Lipschitz gradient + SC

• Main properties of 

x,y 2 dom(f)Lower surrogate

Upper surrogate
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F2
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Local norm:   

Utility functions:   

kukx :=
⇥
uTr2f(x)u

⇤1/2

!⇤(⌧) = �⌧ � ln(1 � ⌧), ⌧ 2 [0, 1) !(⌧) = ⌧ � ln(1 + ⌧), ⌧ � 0

f is self-concordant if '(t) := f(x + td) satisfies |'000(t)|  2'00(t)3/2 for all x and d.

Friday, May 30, 14

Bound on gradient:

‖y− x‖2x
1 + ‖y− x‖x

≤ 〈∇f(y)−∇f(x),y− x〉 ≤
‖y− x‖2x

1− ‖y− x‖x
, ∀x,y ∈ dom(f).

The right-hand side inequality holds for ‖y− x‖x < 1.
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Variable metric proximal-gradient algorithm for SCM

Variable metric proximal operator
Given H � 0 and g ∈ F(Rp). The variable metric proximal operator of g is defined as

proxHg(x) := arg min
y∈Rp

{
g(y) + (1/2)(y− x)TH−1(y− x)

}
(14)

Property (Basis properties of variable metric proximal operator)
1. proxHg(x) is well-defined and single-valued (i.e., (14) has unique solution).
2. Optimality condition:

x ∈ proxHg(x) + H∂g(proxHg(x)), x ∈ Rp.

3. x? is a fixed point of proxHg(·):

0 ∈ ∂g(x?) ⇔ x? = proxHg(x?).

4. Non-expansiveness:

‖proxHg(x)− proxHg(x̃)‖∗H ≤ ‖x− x̃‖H, ∀x, x̃ ∈ Rp.
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Variable metric proximal-gradient algorithm

Variable metric proximal-gradient algorithm [11]
1. Choose x0 ∈ Rp as a starting point and H0 � 0.
2. For k = 0, 1, · · · , perform:{

dk := proxHkg

(
xk −Hk∇f(xk)

)
− xk,

xk+1 := xk + αkdk,
(15)

where αk ∈ (0, 1] is a given step size. Update Hk+1 � 0 if
necessary.

Common choices of Hk

I Hk := λkI , we have proxHg ≡ proxλg and obtain a proximal-gradient method.

I Hk := D a diagonal matrix, proxHg can be transformed into proxλg (by
scaling the variables) and we obtain a proximal-gradient method.

I Hk := ∇2f(xk)−1 , we obtain a proximal-Newton method.

I Hk ≈ ∇2f(xk)−1 , we obtain a proximal quasi-Newton method.
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Proximal-Newton method for CSM

Proximal-Newton algorithm (PNA)
1. Choose x0 ∈ dom(F ) as a starting point.
2. For k = 0, 1, · · · , perform:

Bk := ∇2f(xk),
dk := proxB−1

k
g

(
xk −B−1

k
∇f(xk)

)
− xk, (PN direction)

λk := ‖d‖xk , (PN decrement)
αk = (1 + λk)−1, (step-size)
xk+1 := xk + αkdk.

(16)

Complexity per iteration

I Evaluation of ∇2f(xk) and ∇f(xk) (closed form expressions).
I Computing proxHkg

requires to solve a strongly convex program (14).
I Computing proximal-Newton decrement λk requires (dk)T∇f2(xk)dk.
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Global convergence

Lemma (Descent lemma [11])
Let {xk}k≥0 be the sequence generated by PNA. Then

F (xk+1) ≤ F (xk)− ω(λk) (17)

where ω(τ) := τ − ln(1 + τ) > 0 for τ > 0.

Consequences

I [F (xk+1)− F ?] ≤ [F (xk)− F ?]− ω(λk) for all k ≥ 0.
I [F (xk)− F (x?] ≤ [F (x0)− F ?]−

∑k−1
j=0 ω(λj).

I If λk ≥ λ > 0 for k = 0, . . . ,K, then

[F (xK)− F ?] ≤ [F (x0)− F ?]−Kω(λ).

The number of iterations to reach F (xK)− F ? ≤ ε is

K :=
⌊ [F (x0)− F ?]− ε

ω(λ)

⌋
+ 1.

I Global convergence rate is just sublinear, i.e., O(1/k).
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K :=
⌊ [F (x0)− F ?]− ε

ω(λ)

⌋
+ 1.

I Global convergence rate is just sublinear, i.e., O(1/k).
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Proof of (17)

Sketch of proof.

I Let sk := xk + dk. We have xk+1 − xk = αkdk and
xk+1 = (1− αk)xk + αksk.

I By convexity of g:

g(xk+1) ≤ (1− αk)g(xk) + αkg(sk), αk ∈ (0, 1]. (18)

I By subgradient definition:

g(sk) ≤ g(xk) + v(sk)T (sk − xk), ∀ v(sk) ∈ ∂g(sk). (19)

I Substituting (19) into (18) we get

g(xk+1) ≤ g(xk) + αkv(sk)Tdk. (20)

I By self-concordance of f (upper bound inequality):

f(xk+1) ≤ f(xk) +∇f(xk)(xk+1 − xk) + ω∗(‖xk+1 − xk‖xk ), (21)

under condition ‖xk+1 − xk‖xk < 1.
�
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Proof of (17) (cont)

Sketch of proof (cont).

I Summing up (20) and (21) and using F := f + g, we get

F (xk+1) ≤ F (xk) + αk[∇f(xk) + v(sk)]Tdk + ω∗(αk‖dk‖xk ). (22)

I From the optimality property 2 of (14) we have

∇f(xk) + v(sk) = −∇2f(xk)dk. (23)

I Plug (24) into (22) and use λk := ‖dk‖xk , we get

F (xk+1) ≤ F (xk)− αkλ2
k + ω∗(αkλk). (24)

I Let ψ(α) := αλ2
k − ω∗(αλk) = αλ2

k + αλk + ln(1− αλk). This function attains
the maximum at αk = (1 +λk)−1 and ψ(αk) = λk − ln(1 +λk). Hence, we have

F (xk+1) ≤ F (xk)− ω(λk),

which is (17).
�
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Local convergence

Theorem (Local quadratic convergence [11])
Let {xk} be the sequence generated by PNA. If ‖x0 − x?‖x? ≤ σ0 := 0.08763, then

‖xk+1 − x?‖x? ≤ c∗‖xk − x?‖2x? , k ≥ 0,

where c∗ := 3.57.
Consequently, {xk}k≥0 converges to x? at a quadratic rate.

Quadratic convergence region
Let σ := 0.08763. Then the quadratic convergence region Qσ is defined as:

Qσ := {x ∈ dom(F ) : ‖x− x?‖x? ≤ σ} .

For any x0 ∈ Qσ , {xk} converges to x? at a quadratic rate.

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 47



Local convergence

Theorem (Local quadratic convergence [11])
Let {xk} be the sequence generated by PNA. If ‖x0 − x?‖x? ≤ σ0 := 0.08763, then

‖xk+1 − x?‖x? ≤ c∗‖xk − x?‖2x? , k ≥ 0,

where c∗ := 3.57.
Consequently, {xk}k≥0 converges to x? at a quadratic rate.

Quadratic convergence region
Let σ := 0.08763. Then the quadratic convergence region Qσ is defined as:

Qσ := {x ∈ dom(F ) : ‖x− x?‖x? ≤ σ} .

For any x0 ∈ Qσ , {xk} converges to x? at a quadratic rate.

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 47



Overall analytical worst-case complexity

Analytic complexity
• Worst-case complexity to obtain an   -approximate solution"

#iterations =

�
�(x0) � �(x⇤)

0.021

⌫
+ O

✓
ln ln

✓
4.56

"

◆◆

quadratic convergence 
region

Q�

x⇤

x0 x1

xj

Can explicitly calculate

Line-search can 
accelerate the 
convergence

global convergence local convergence

Q� :=
�
xk | �k  0.219

 

• Line-search enhancement

Thursday, June 12, 14

F (x0) � F ?

Q� := {x 2 dom(F ) : kx � x?kx?  �}

Monday, June 23, 14
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Enhancements

Two new line-search strategies
The optimal step-size α∗k := (1 + λk)−1 provides a lower bound. Perform line-search
on [α∗k, 1].
I Forward line-search: Start from αk and increase the step-size until meet 1.
I Enhanced backtracking: Start from 1 and decrease the step size until meet α∗k

Illustration of three line-search strategies

A modification of the proximal-Newton method: In Algorithm 1, if we remove
Step 4 and replace analytic step-size selection calculation in Step 3 with a backtracking
line-search, then we reach the proximal Newton method of (Lee et al., 2012). Hence, this
approach in practice might lead to reduced overall computation since our step-size ↵k is
selected optimally with respect to the worst case problem structures as opposed to the
particular instance of the problem. Since the backtracking approach always starts with the
full-step, we also do not need to know whether we are within the quadratic convergence
region. Moreover, the cost of evaluating the objective at the full-step in certain applications
may not be significantly worse than the cost of calculating ↵k or may be dominated by the
cost of calculating the Newton direction.

In stark contrast to backtracking, our new theory behooves us to propose a new forward
line-search procedure as illustrated by Figure 2. The idea is quite simple: we start with the

0 1

pppppppp
pppppppru
↵⇤

k

   s R R

Enhanced backtracking

@@R

Standard backtracking

�� 
Forward line-search

�
�
���

Overjump��✓

Figure 2: Illustration of step-size selection procedures

“optimal” step-size ↵k and increase it towards full-step with a stopping condition based on
the objective evaluations. Interestingly, when we analytically calculate the step, we also have
access to the side information on whether or not we are within the quadratic convergence
region, and hence, we can automatically switch to Step 4 in Algorithm 1. Alternatively,
calculation of the analytic step-size can enhance backtracking since the knowledge of ↵k

reduces the backtracking range from (0, 1] to (↵k, 1] with the side-information as to when
to automatically take the full-step without function evaluation.

3.2 A proximal quasi-Newton scheme

Even if the function f is self-concordant, the numerical evaluation of r2f(x) can be expen-
sive in many applications (e.g., f(x) :=

Pp
j=1 fj(Ajx), with p � n). Hence, it is interesting

to study proximal quasi-Newton method for solving (1). Our interest in the quasi-Newton
methods in this paper is for completeness; we do not provide any algorithmic details or
implementations on our quasi-Newton variant.

To this end, we need a symmetric positive definite matrix Hk that approximates r2f(xk)
at the iteration k. As a result, our main assumption here is that matrix Hk+1 at the next
iteration k + 1 satisfies the secant equation:

Hk+1(x
k+1 � xk) = rf(xk+1) �rf(xk). (23)

For instance, it is well-known that the sequence of matrices {Hk}k�0 updated by the fol-
lowing BFGS formula satisfies the secant equation (23) (Nocedal and Wright, 2006):

Hk+1 := Hk +
1

(yk)T zk
yk(yk)T � 1

(zk)THkzk
Hkz

k(Hkz
k)T , (24)

14
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Example: Graphical model selection
Graphical model selection

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f(Θ)

+ ρ‖vec(Θ)‖1︸           ︷︷           ︸
g(Θ)

}
.
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Example: Graphical model selection
Graphical model selection

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f(Θ)

+ ρ‖vec(Θ)‖1︸           ︷︷           ︸
g(Θ)

}
.

Computational cost

I ∇f(Θ) = vec(Σ−Θ−1
k

) and ∇2f(Θk) = Θ−1
k
⊗Θ−1

k
(⊗-Kronecker product).

I Compute the search direction dk via dualization:

Uk = arg min
‖vec(U)‖∞≤1

{
(1/2)trace((ΘkU)2) + trace(QkU)

}
,

where Qk := ρ−1(ΘkΣΘk − 2Θk). Then dk := −((ΘkΣ− I)Θk + ρΘkUkΘk).
I The proximal-Newton decrement λk:

λk := (p− 2trace(Wk) + trace(W2
k))1/2, Wk := Θk(Σ + ρUk).
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g(Θ)

}
.

Computational cost

I ∇f(Θ) = vec(Σ−Θ−1
k

) and ∇2f(Θk) = Θ−1
k
⊗Θ−1

k
(⊗-Kronecker product).

I Compute the search direction dk via dualization:

Uk = arg min
‖vec(U)‖∞≤1

{
(1/2)trace((ΘkU)2) + trace(QkU)

}
,

where Qk := ρ−1(ΘkΣΘk − 2Θk). Then dk := −((ΘkΣ− I)Θk + ρΘkUkΘk).
I The proximal-Newton decrement λk:

λk := (p− 2trace(Wk) + trace(W2
k))1/2, Wk := Θk(Σ + ρUk).

Only need matrix-matrix multiplications
No Cholesky factorizations or matrix inversions

cf. Lecture 5 @ http://lions.epfl.ch/mathematics_of_data
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Test on the real-data: Lymph and Leukemia

• PNA vs. QUIC:
I QUIC subproblem solver: special block-coordinate descent algorithm.
I PNA subproblem solver: general proximal-gradient algorithms.

On the average ×5 acceleration (up to ×15) over Matlab QUIC

• Convergence behavior: ρ = 0.5 - Gene data (Genetic regulatory network)
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Monday, March 23, 15
0Details: Composite self-concordant minimization, Journal of Machine Learning Research, vol. 16, 2015
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Proximal-gradient method for CSM
Choice of variable matrix and line-search condition

Hk := LkI, Lk > 0

Line search condition: Find the largest Lk such that:

Lk ≤ ηk :=
λ2
k

‖dk‖22
. (25)

Proximal-gradient algorithm (PGA)
1. Given ε > 0. Choose x0 ∈ dom(F ) as a starting point.
2. For k = 0, 1, · · · , perform:

2.1. Choose Lk > 0 satisfies (25).
2.2. dk := proxλkg(xk − γk∇f(xk))− xk, with γk := 1/Lk.
2.3. λk := ‖dk‖xk , βk :=

√
Lk‖dk‖2.

2.4. If βk ≤ ε, terminate.
2.5. Step size: αk := β2

k/(λk(λk + β2
k)).

2.6. Update xk+1 := xk + αkdk.
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Global convergence and local convergence

Theorem (Global convergence [11])
I If Lk ≥ L > 0 for all k ≥ 0 and LF (F (x0)) := {x ∈ dom(F ) : F (x) ≤ F (x0)} is
bounded from below, then {xk} generated by PGA converges to x?.

I Let

x̄k := S−1
k

k∑
j=0

αkxj , where Sk :=
k∑
j=0

αj > 0.

Then F (x̄k)− F ? ≤
L̄k

2Sk
‖x0 − x?‖22 , where L̄k := max

0≤j≤k
Lj .

Theorem (Local convergence [11])
Assumptions:
I Let x? be the unique solution of (1) such that ∇2f(x?) � 0.
I For k sufficiently large, if Dk := LkI and max{|1− Lk

σ∗min
|, |1− Lk

σ∗max
|} < 1

2 .

Conclusion: {xk}k≥0 generated by PGA converges to x? at a linear rate.
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Example 1: Graphical model selection

Graphical model selection

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f(Θ)

+ ρ‖vec(Θ)‖1︸           ︷︷           ︸
g(Θ)

}
.

Linear convergence of PGA

Heteroschedastic LASSO [rho decreases from left to right]

New theory: Local linear convergence of the PG 
Graph learning: Lymph [p = 587]
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Thursday, June 12, 14
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Improvement - greedy proximal gradient variant

Mathematical observation
Let us define
I skg := xk + dk

I x̂k = (1− αk)xk + αksk for αk ∈ (0, 1].
If F (skg) ≤ F (xk), then by convexity of F :

F (x̂k) = F ((1− αk)xk + αk) ≤ (1− αk)F (xk) + αkF (skg)
F (skg )≤F (xk)

≤ F (xk)

By comparing F (xk), F (skg) and F (x̂k) we can pick xk+1 as

xk+1 =
{

skg if skg ∈ dom(F ) and F (skg) ≤ F (xk),
x̂k otherwise.
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Improvement - greedy proximal gradient variant

Visualization of the idea

Then we can show that F (x̄k) � F ⇤  L̄
2Sk

��x0 � x⇤��2

2
, where L̄ := max

j=0,k
Lk. If ↵j � ↵ > 0

for 0  j  k, then Sk � ↵(k + 1), which leads to F (x̄k) � F ⇤  L̄
2(k+1)↵

��x0 � x⇤��2

2
. The

proof of this statement can be found in (Tran-Dinh et al., 2014), which we omit here.

A modification of the proximal-gradient method: If the point sk
g generated by (15)

belongs to dom(F ), then F (sk
g) < +1. Similarly to the definition of xk+1 in (27), we can

define a new trial point

x̂k := (1 � ↵k)x
k + ↵ks

k
g . (35)

If F (sk
g)  F (xk), then, by the convexity of F , it is easy to show that

F (x̂k) = F
⇣
(1 � ↵k)x

k + ↵ks
k
g

⌘
 (1 � ↵k)F (xk) + ↵kF (sk

g)
F (sk

g)F (xk)

 F (xk).

In this case, based on the function values F (sk
g), F (x̂k) and F (xk) we can eventually choose

-

6r
r
r

r

r
r

0
x⇤xk sk

g sk
g xx̂k

F (xk)

F (sk
g)

F (sk
g)

F (x̂k)

F (x)Q(·;xk,Hk)

x̂k :=(1�↵k)xk+↵ksk
g

x̂k := sk
g Case 1

Case 2

Figure 3: Illustration of the modified proximal-gradient method

the next iteration xk+1 as follows:

xk+1 :=

⇢
sk
g if sk 2 dom(F ) and F (sk

g) < F (x̂k) (Case 1),

x̂k otherwise (Case 2).
(36)

The idea of this greedy modification is illustrated in Figure 3. We note that here we need
to check sk

g 2 dom(F ) such that F (sk
g) < F (xk) and additional function evaluations F (sk

g)

and F (x̂k). However, careful implementations can recycle quantities that enable us to
evaluate the objective at sk

g and at xk+1 with very little overhead over the calculation of ↵k

(see Section 4). By using (36), we can specify a modified proximal gradient algorithm for
solving (1), whose details we omit here since it is quite similar to Algorithm 2.

4. Concrete instances of our optimization framework

We illustrate three instances of our framework for some of the applications described in
Section 1. For concreteness, we describe only the first and second order methods. Quasi-
Newton methods based on (L-)BFGS updates or other adaptive variable metrics can be
similarly derived in a straightforward fashion.

19
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Example 2: Poisson imaging reconstruction

Optimization problem with TV-norm

min
x∈Rn×p

{ n∑
i=1

(Kx)i −
n∑
i=1

yi log((Kx)i)︸                                          ︷︷                                          ︸
f(x)

+ ρ‖x‖TV︸     ︷︷     ︸
g(x)

}

Convergence of PGA, greedy PGA and SPIRAL-TAP

Our method vs SPIRAL-TAP [Harmany2012]

Poisson imaging reconstruction via TV

Original image Poisson noise image Reconstructed image (ProxGrad) Reconstructed image (ProxGradNewton) Reconstructed image (SPIRAL−TAP)

On the average x10 acceleration (up to x250) over SPIRAL-TAP with better accuracy
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Example 2: Poisson imaging reconstruction - cont.

Visualization of the outcome - cameramanOur method vs SPIRAL-TAP [Harmany2012]

Poisson imaging reconstruction via TV

Original image Poisson noise image Reconstructed image (ProxGrad) Reconstructed image (ProxGradNewton) Reconstructed image (SPIRAL−TAP)

On the average x10 acceleration (up to x250) over SPIRAL-TAP with better accuracy
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Overview of algorithms/complexity
Assumption Algorithm Convergence rate (ε) Complexity per iteration

Subgradient O(1/
√
k) 1 sub-gradient of f , g

f, g ∈ F(Rp) Bundle method O(1/
√
k) 1 sub-gradient of f , g

Mirror-descent O(1/
√
k) 1 sub-gradient of f , g

Proximal-gradient O(1/k) (µ = 0), lin-
ear (µ > 0)

1 gradient, 1 prox opera-
tor

f ∈ F1,1
L,µ

(Rp), g ∈
Fprox(Rn)

Accelerated proximal-
gradient

O(1/k2) (µ = 0), lin-
ear (µ > 0)

1 gradient, 1 or 2 prox op-
erator(s)

Proximal quasi-Newton locally superlinear, glob-
ally sublinear

One gradient, rank-2 up-
date

Proximal Newton locally quadratic, locally
sublinear O(1/ks),
1 ≤ s ≤ 3

One gradient, one Hessian
inverse

Peaceman-Douglas O(1/k)-ergodic ≥ 1 prox operator(s) f ,
g

f, g ∈ Fprox(Rn) Douglas-Rachford O(1/k)-ergodic ≥ 1 prox operator(s) f ,
g

ALM O(1/k2) ≥ 1 prox operator(s) f ,
g

ADMM O(1/k) ≥ 1 prox operator(s) f ,
g

I ALM = augmented Lagrangian method, ADMM = alternating direction method of multiplier.
I F = class of proper, closed convex functions.

I F1,1
L,µ

= class of strongly convex functions with Lipschitz gradient.

I Fprox = class of convex functions with tractable prox-operator.Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 45/ 47



Overview of algorithms/complexity

Lecture 05: Composite Convex Minimization

Overview of algorithms/complexity
Assumption Algorithm Convergence rate Complexity per iteration

Subgradient O(1/
Ô

k) 1 sub-gradient of f , g

f , g œ F(Rp) Bundle method O(1/
Ô

k) 1 sub-gradient of f , g

Mirror-descent O(1/
Ô

k) 1 sub-gradient of f , g
Proximal-gradient O(1/k) (µ = 0), lin-

ear (µ > 0)
1 gradient, 1 prox opera-
tor

f œ F1,1
L,µ(Rp), g œ

Fprox(Rn)
Accelerated proximal-
gradient

O(1/k2) (µ = 0), lin-
ear (µ > 0)

1 gradient, 1 or 2 prox op-
erator(s)

Proximal quasi-Newton locally superlinear, glob-
ally sublinear

One gradient, rank-2 up-
date

Proximal Newton locally quadratic, locally
sublinear O(1/ks),
1 Æ s Æ 3

One gradient, one Hessian
inverse

Peaceman-Douglas O(1/k)-ergodic Ø 1 prox operator(s) f , g
f , g œ Fprox(Rn) Douglas-Rachford O(1/k)-ergodic Ø 1 prox operator(s) f , g

ALM O(1/k2) Ø 1 prox operator(s) f , g
ADMM O(1/k) Ø 1 prox operator(s) f , g

I ALM = augmented Lagrangian method, ADMM = alternating direction method of multiplier.
I F = class of proper, closed convex functions.
I F1,1

L,µ = class of strongly convex functions with Lipschitz gradient.

I Fprox = class of convex functions with tractable prox-operator.
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