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Outline

I Today
1. Proximal Newton-type method.
2. Stochastic proximal gradient method.
3. Stochastic proximal gradient method with progressive variance reduction.

I Next week
1. Constrained convex minimization I: The primal-dual approach.
2. Smoothing approaches for non-smooth convex minimization.
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Motivation

Motivation
Data analytics problems in various disciplines can often be simplified to nonsmooth
composite convex minimization problems. To this end, this lecture provides efficient
numerical solution methods for such problems.

Intriguingly, composite minimization problems are far from generic nonsmooth
problems and we can exploit individual function structures to obtain numerical
solutions nearly as efficiently as if they are smooth problems.
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Composite convex minimization

Problem (Unconstrained composite convex minimization)

F ? := min
x∈Rp

{F (x) := f(x) + g(x)} (1)

I f and g are both proper, closed, and convex.
I dom(F ) := dom(f) ∩ dom(g) , ∅ and −∞ < F ? < +∞.
I The solution set S? := {x? ∈ dom(F ) : F (x?) = F ?} is nonempty.
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How can we better adapt to the local geometry?
Non-adaptive:

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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How can we better adapt to the local geometry?
Line-search:

�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
Lk

2
kx � xkk2

2
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How can we better adapt to the local geometry?
Variable metric:

�f(xk)
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The idea of the proximal-Newton method

Assumptions A.2
Assume that f ∈ F2,1

L,µ(Rp) and g ∈ Fprox(Rp).

Optimality condition of (1):

0 ∈ ∇f(x?) + ∂g(x?). (2)

The idea of proximal-Newton method

I Given xk, under Assumptions A.2, we can linearize the smooth term of the (2):

0 ∈ ∇f(x?) + ∂g(x?) ≈ ∇f(xk) +∇2f(xk)T (x? − xk) + ∂g(x?).

I Similar to the classical Newton method: Solving

0 ∈ ∇f(xk) +∇2f(xk)T (x− xk) + ∂g(x) (3)

to obtain xk+1.
I The last condition is equivalent to

xk+1 := arg min
x∈Rp

{1
2

(x−xk)T∇2f(xk)(x−xk)+∇f(xk)T (x−xk)+g(x)
}
. (4)
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Proximal-quasi-Newton-type algorithms

I Let Hk ≈ ∇2f(xk) be a symmetric positive definite (SDP) matrix. Then, we
have

xk −H−1
k
∇f(xk) ∈ (I+ H−1

k
∂g)(xk+1),

or
xk+1 := proxH−1

k
g

(
xk −H−1

k
∇f(xk)

)
. (5)

I By letting dk := xk+1 − xk, (5) is equivalent to

dk := arg min
d∈Rp

{1
2

dTHkd +∇f(xk)Td + g(xk + d)
}
. (6)

Then dk is called a proximal-Newton-type direction.

I Proximal-Newton-type algorithm generates a sequence {xk}k≥0 starting from
x0 ∈ Rp and update:

xk+1 := xk + αkdk, (7)

where dk is given by (6) and αk ∈ (0, 1] is a damped step-size.

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 47



How to find step size αk?

Lemma (Descent lemma [6])
Let xk(α) := xk + αdk for sufficiently small α ∈ (0, 1] and Hk � 0. Then, we have:

F (xk(α)) ≤ F (xk)− (1/2)α(dk)THkdk +O(α2).

Since Hk � 0, this lemma tells us that:
I If dk , 0, then there exists α > 0 such that F (xk(α)) < F (xk).
I The value of α can be computed via backtracking line search.
I If dk = 0, then we can easily check that xk is a solution of (1).

Backtracking line-search

I Let
rk := ∇f(xk)Tdk + g(xk + dk)− g(xk).

I Find the smallest integer number j ≥ 0 such that αk := βj and

F (xk + αkdk) ≤ F (xk) + cαkrk, (8)

where c ∈ (0, 0.5] and β ∈ (0, 1) are two given constants (e.g., c = 0.1 and
β = 0.5).

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 47



The proximal-Newton-type algorithm
We can summary the proximal-Newton-type method as follows:

Proximal-Newton algorithm (PNA)
1. Given x0 ∈ Rp as a starting point. Choose c := 0.1 and
β := 0.5
2. For k = 0, 1, · · · , perform the following steps:
2.1. Evaluate an SDP matrix Hk ≈ ∇2f(xk) and ∇f(xk).

2.2. Compute dk := proxH−1
k
g

(
xk −H−1

k
∇f(xk)

)
− xk.

2.3. Find the smallest integer number j ≥ 0 such that

F (xk + βjdk) ≤ F (xk) + cβjrk

and set αk := βj .
2.4. Update xk+1 := xk + αkdk.

I If Hk ≡ ∇2f(xk), then PNA becomes a pure proximal-Newton algorithm.
I If Hk ≈ ∇2f(xk), then PNA becomes a proximal-quasi-Newton algorithm.
I Main computation is Step 2.2, which requires a generalized prox-operator:

proxH−1
k
g

(
xk + H−1

k
∇f(xk)

)
.

I Let g(x) = ρ‖x‖1. When Hk is not diagonal, the cost is the same as solving an
`1-regularized least squares, otherwise it is simply soft thresholding.
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Convergence analysis

Assumption A.3.
I The subproblem proxH−1

k
g

(
xk + H−1

k
∇f(xk)

)
is solved exactly for all k ≥ 0.

Theorem (Global convergence [6])
Assumptions:
I The sequence {xk}k≥0 is generated by PNA.
I Assumption A.3. is satisfied.
I There exists µ > 0 such that Hk � µI for all k ≥ 0.

Conclusion:
I {xk}k≥0 globally converges to a solution x? of (1).

I We have not yet obtained a global convergence rate of proximal-Newton
methods.
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Convergence analysis

Assumption A.3.
I The subproblem proxH−1

k
g

(
xk + H−1

k
∇f(xk)

)
is solved exactly for all k ≥ 0.

Theorem (Local convergence [6])
Assumptions:
I The sequence {xk}k≥0 is generated by PNA.
I Assumption A.3. is satisfied.
I Exist 0 < µ ≤ L2 < +∞ such that µI � Hk � L2I for all sufficiently large k.

Conclusion:
I If Hk ≡ ∇2f(xk), then αk = 1 for k sufficiently large (full-step).
I If Hk ≡ ∇2f(xk), then {xk} locally converges to x? at a quadratic rate.
I If Hk satisfies the Dennis-Moré condition:

lim
k→+∞

‖(Hk −∇2f(x?))(xk+1 − xk)‖
‖xk+1 − xk‖

= 0, (9)

then {xk} locally converges to x? at a super linear rate.
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How to compute the approximation Hk?

How to update Hk?
Matrix Hk can be updated by using low-rank updates.
I BFGS update: maintain the Dennis-Moré condition and Hk � 0.

Hk+1 := Hk +
ykyTk
sT
k

yk
−

HksksTk Hk

sT
k

Hksk
, H0 := γI, (γ > 0).

where yk := ∇f(xk+1)−∇f(xk) and sk := xk+1 − xk.
I Diagonal+Rank-1 [2]: computing PN direction dk is in polynomial time, but it

does not maintain the Dennis-Moré condition:

Hk := Dk + ukuTk , uk := (sk −H0yk)/
√

(sk −H0yk)Tyk,

where Dk is a positive diagonal matrix.
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Advantages and disadvantages

Advantages
I PNA has fast local convergence rate (super-linear or quadratic)
I Numerical robustness under the inexactness/noise (inexact proximal-Newton

method [6]).
I Quasi-Newton method is useful if the evaluation of ∇2f is expensive.
I Suitable for problems with many data points but few parameters. For example,

problems of the form:

F ∗ := min
x∈Rp

{
n∑
j=1

`j(aTj x + bj) + g(x)

}
,

where `j is twice continuously differentiable and convex, g ∈ Fprox, p� n.

Disadvantages
I Expensive iteration compared to proximal-gradient methods.
I Global convergence rate may be worse than accelerated proximal-gradient

methods.
I Requires a good initial point to get fast local convergence, which is hard to find.
I Requires strict conditions for global/local convergence analysis.
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Example 1: Sparse logistic regression

Problem (Sparse logistic regression)
Given a sample vector a ∈ Rp and a binary class label vector b ∈ {−1,+1}n. The
conditional probability of a label b given a is defined as:

P(b|a,x, µ) = 1/(1 + e−b(xT a+µ)),

where x ∈ Rp is a weight vector, µ is called the intercept.
Goal: Find a sparse-weight vector x via the maximum likelihood principle.

Optimization formulation

min
x∈Rp

{ 1
n

n∑
i=1

L(bi(aTi x + µ))︸                             ︷︷                             ︸
f(x)

+ ρ‖x‖1︸  ︷︷  ︸
g(x)

}
, (10)

where ai is the i-th row of data matrix A in Rn×p, ρ > 0 is a regularization
parameter, and ` is the logistic loss function L(τ) := log(1 + e−τ ).
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Example: Sparse logistic regression

Real data
I Real data: w2a with n = 3470 data points, p = 300 features
I Available at

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters
I Tolerance 10−6.
I L-BFGS memory m = 50.
I Ground truth: Get a high accuracy approximation of x? and f? by TFOCS with

tolerance 10−12.
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Example: Sparse logistic regression-Numerical results
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Example 2: `1-regularized least squares

Problem (`1-regularized least squares)
Given A ∈ Rn×p and b ∈ Rn, solve:

F ? := min
x∈Rp

{
F (x) :=

1
2
‖Ax− b‖2

2 + ρ‖x‖1

}
, (11)

where ρ > 0 is a regularization parameter.

Complexity per iterations

I Evaluating ∇f(xk) = AT (Axk − b) requires one Ax and one ATy.
I One soft-thresholding operator proxλg(x) = sign(x)⊗max{|x| − ρ, 0}.
I Optional: Evaluating L = ‖ATA‖ (spectral norm) - via power iterations (e.g.,

20 iterations, each iteration requires one Ax and one ATy).

Synthetic data generation

I A := randn(n, p) - standard Gaussian N (0, I).
I x? is a s-sparse vector generated randomly.
I b := Ax? +N (0, 10−3).
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Example 2: `1-regularized least squares - Numerical results - Trial 1

Parameters: n = 750, p = 2000, s = 200, ρ = 1
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Example 2: `1-regularized least squares - Numerical results - Trial 2

Parameters: n = 750, p = 2000, s = 200, ρ = 1
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Outline

I Today
1. Proximal Newton-type method.
2. Stochastic proximal gradient method.
3. Stochastic proximal gradient method with progressive variance reduction.

I Next week
1. Constrained convex minimization I: The primal-dual approach.
2. Smoothing approaches for non-smooth convex minimization.
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Convex composite minimization

Problem (Mathematical formulation)
Consider the following constrained convex minimization problem:

F ? = min
x∈Rp

{
F (x) := E[h(x, θ)] + g(x)

}
I θ is a random vector whose probability distribution is supported on set Θ.
I The solution set S? := {x? ∈ dom(F ) : F (x?) = F ?} is nonempty.
I h(x, θ) ∈ F1,1

Lθ
(Rp) and f = E[h(x, θ)] ∈ F1,1

L (Rp).
I g ∈ Fprox(Rp).

• When g = 0, the problem reduces to the one considered in Lecture 7. Every example
in Lecture 7 can be extended accordingly to the above formulation.
• The goal of this lecture is to extend the methods in Lecture 7 for a non-zero g.
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Stochastic proximal gradient method

Stochastic proximal gradient method (SPG)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = proxγkg(xk − γkG(xk, θk)).

• We assume that {θk} are jointly independent and G(xk, θk) is an unbiased estimate
of the full gradient, i.e., it satisfies

E[G(xk, θk)] = ∇f(xk).

• We obtain the SG method in Lecture 7 when g = 0.

Remark
• SPG shares the same structure as the proximal gradient method, but the gradient is
replaced by an unbiased estimate in the 2nd step. The cost of computing this estimate
is typically much cheaper than that of ∇f(xk).
• As G(xk, θk) is an unbiased estimate of the full gradient, we expect that SPG would
also perform well.
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Convergence analysis

Assumption A4.
(i) The variance is bounded: Eθ[‖G(x, θ)−∇f(x)‖2] ≤ σ2

(ii) The step size (γk)k∈N ∈ `2(N)\`1(N), i.e.,

∞∑
k=0

γk =∞ and
∞∑
k=0

γ2
k < +∞.

Theorem (Ergodic convergence)
Assumptions:
I The sequence {xk}k≥0 is generated by SPG.
I Assumption A4. is satisfied and the set of solutions is non-empty.

Conclusion:

I Define x̂s =
(∑s

k=0 γkxk
)
/
∑s

k=0 γk, then

EF (x̂s)− F (x?) ≤
(

0.5‖x0 − x?‖2 + σ2
∞∑
k=0

γ2
k

)
/

s∑
k=0

γk.
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Convergence analysis

Assumption A4.
(i) The variance is bounded: Eθ[‖G(x, θ)−∇f(x)‖2] ≤ σ2

(ii) The step size (γk)k∈N ∈ `2(N)\`1(N), i.e.,

∞∑
k=0

γk =∞ and
∞∑
k=0

γ2
k < +∞.

Theorem (Non-ergodic convergence [14])
Assumptions:
I The sequence {xk}k≥0 is generated by SPG.
I Assumption A4(i). is satisfied and γk ∼ 1/(k + 1).
I f is µ-strongly convex.

Conclusion:
I 1/k rate is obtained:

E‖xk − x?‖2 = O(1/k).
I If F is R-smooth, i.e. F (x)− F (x?) ≤ R‖x− x?‖2, then

EF (xk)− F (x?) = O(1/k).
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Composite optimization with finite sums

Composite optimization with finite sums

F ? := min
x∈dom(F )

{
F (x) :=

1
m

m∑
k=1

fk(x) + g(x)
}
, (12)

I fk ∈ F1,1
Lk

(Rp) and f = 1
k

∑m

k=1 fk ∈ F
1,1
L (Rp).

I g ∈ Fprox(Rp).

Why is stochastic minimization?
I f(x) = Ejfj(x) where P(j = k) = 1/m.
I Computation ∇f(x) = 1

m

∑m

k=1∇fk(x) is expensive when m≫ 1.
I Covers many well-known examples in maching learning, portfolio optimization,

SVM.
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Large scale problems

Definition (Recall)

I ∇fj is called the stochastic gradient of f , and it is unbiased estimate, i.e.

Ej∇fj(x) =
m∑
i=1

P(j = k)∇fk(x) =
1
m

m∑
i=1

∇fk(x) = ∇f(x)

I Ej‖∇fj(x)−∇f(x)‖2 is called variance.

Example
Define f(x) = 1

2m‖Ax− b‖2 with b ∈ Rm. To find stochastic gradient, observe:

f(x) =
1

2m

m∑
k=1

|aTk x− bk|2

Thus,

fj(x) =
1
2
|aTj x− bj |2 with ∇fj(x) = (aTj x− bj)aj
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Large scale problems

Definition (Recall)

I ∇fj is called the stochastic gradient of f , and it is unbiased estimate, i.e.

Ej∇fj(x) =
m∑
i=1

P(j = k)∇fk(x) =
1
m

m∑
i=1

∇fk(x) = ∇f(x)

I Ej‖∇fj(x)−∇f(x)‖2 is called variance.

Example
Similarly, one can find stochastic gradient of
1. f(x) = 1

m

∑m

i=1 log(1 + exp(−biaTi x)) where ai ∈ Rp,bi = ±1.

2. f(x) = 1
2 xTQx where Q is positive semidefinite matrix.

3. f(x) = 1
m

∑m

i=1 (aTi x− b̄)2 where ai ∈ Rp, b̄ ∈ R.
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Stochastic proximal gradient algorithm for the finite sum problem

Stochastic proximal gradient algorithm (SPG) [4, 14]
1. Choose x0 ∈ Rp as a starting point and γ0 > 0.
2. For k = 0, 1, · · · , perform:{

Pick ik ∈ {1, . . . ,m} uniformly at random
xk+1 := proxγkg

(
xk − γk∇fik (xk)

)
,

(13)

where γk ∈ (0, 1/L] is a given step size aka learning rate

Common features
I SPG shares the same structure as PG (proximal gradient) where the full gradient

is replaced by stochastic gradient. Thus, SPG only evaluates gradient of a single
component function.

I The computational cost per iteration is only 1/m that of the PG method.
I L ≤ m−1

∑m

k=1 Lk ≤ Lmax = max1≤k≤m Lk.
I To ensure convergnce, the step size is often chosen such that

(γk)k∈N ∈ `2(N)\`1(N).

Mathematics of Data: From Theory to Computation | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 47



Stochastic proximal gradient algorithm for the finite sum problem

Stochastic proximal gradient algorithm (SPG) [4, 14]
1. Choose x0 ∈ Rp as a starting point and γ0 > 0.
2. For k = 0, 1, · · · , perform:{

Pick ik ∈ {1, . . . ,m} uniformly at random
xk+1 := proxγkg

(
xk − γk∇fik (xk)

)
,

(14)

where γk ∈ (0, 1/L] is a given step size aka learning rate

Complexity per iteration: One gradient and prox

I Evaluation of ∇fik (xk) is much cheaper than ∇f(xk).
I Closed-form expressions for proxγkg are given in previous lecture for several g.
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Convergence analysis

Assumption A4.
(i) The variance is bounded: Ej [‖∇fj(x)−∇f(x)‖2] ≤ σ2

(ii) The step size (γk)k∈N ∈ `2(N)\`1(N), i.e.,

∞∑
k=0

γk =∞ and
∞∑
k=0

γ2
k < +∞.

Theorem (Ergodic convergence)
Assumptions:
I The sequence {xk}k≥0 is generated by SPG.
I Assumption A4. is satisfied and the set of solutions is non-empty.

Conclusion:

I Define x̂s =
(∑s

k=0 γkxk
)
/
∑s

k=0 γk, then

EF (x̂s)− F (x?) ≤
(

0.5‖x0 − x?‖2 + σ2
∞∑
k=0

γ2
k

)
/

s∑
k=0

γk.
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Convergence analysis

Assumption A4.
(i) The variance is bounded: Ej [‖∇fj(x)−∇f(x)‖2] ≤ σ2

(ii) The step size (γk)k∈N ∈ `2(N)\`1(N), i.e.,

∞∑
k=0

γk =∞ and
∞∑
k=0

γ2
k < +∞.

Theorem (Non-ergodic convergence [14])
Assumptions:
I The sequence {xk}k≥0 is generated by SPG.
I Assumption A4(i). is satisfied and γk ∼ 1/(k + 1).
I f is µ-strongly convex.

Conclusion:
I 1/k rate is obtained:

E‖xk − x?‖2 = O(1/k).
I If F is R-smooth, i.e. F (x)− F (x?) ≤ R‖x− x?‖2, then

EF (xk)− F (x?) = O(1/k).
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Comparisons
I SPG vs PG

Algorithm γk → 0
Strong
convexity

Convergence
Rate

#
grad/Iter.

PG No No Ergodic 1/k m

SPG Yes No Ergodic
1/
∑k−1

j=0
γj 1

PG No Yes Non-Ergodic Linear m

SPG Yes Yes Non-Ergodic
1/k 1

I PG= Proximal gradient, aka Forward-backward.
I SPG= Stochastic Proximal gradient.

I Advantages and disadvantages of SPG
I Complexity per iteration is very low and hence SPG is suitable for large problems such

as SVM, logistic regression.
I The convergence rate is slower than PG and hence SPG is suitable when we require only

low accurate of solution.
Conclusion: SPG −→ Large scale problems + low accurate of solution

I The bounded variance condition is standard but it is hard to evaluate and hence the
learning rate need to go to 0 to cancel its growth.

Soltuion: Use the variance reduction technique (see Prox-SVRG)
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Example: `1-regularized least squares revisited

Problem (`1-regularized least squares)
Given A ∈ Rm×p and b ∈ Rm, solve:

F ? := min
x∈Rp

{
F (x) :=

1
2m
‖Ax− b‖2

2 + ρ‖x‖1

}
, (15)

where ρ > 0 is a regularization parameter.

Complexity per iterations

I Evaluating ∇fj(xk) = (aTj xk − b)aj requires one aTj x and one λaj .
I One soft-thresholding operator proxλg(x) = sign(x)⊗max{|x| − κ, 0}.
I Optional: Evaluating Lmax = max1≤k≤m ‖ak‖2 - via iterations.

Synthetic data generation

I A := randn(m, p) - standard Gaussian N (0, I).
I x? is a sparse vector generated randomly.
I b := Ax? +N (0, 10−3).
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Example: `1-regularized least squares revisited- Numerical test

epoch
10-2 10-1 100 101 102 103

E
rg
od

ic
co
nv

er
ge
n
ce

in
fu
n
ct
io
n
va
lu
e

10-1

100

101

102

Deterministic: γt = 0.25/L
Stochastic: γt = 100/(100 + t)
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*Accelerated SPG I

Accelerated SPG (AccSPG)

0. 0 ≤ µ-strong convexity of F .
1. Choose y0 = z0 = 0, (γk)k∈N, (αk)k∈N ∈ ]0,+∞[N, α0 = 1, γ0 = L+ µ.
2. For k = 0, 1, . . . perform:
2a. xk+1 = (1− αk)yk + αkzk.
2b. yk+1 = proxg/γk

(
xk+1 − 1

γk
G(xk+1, θk)

)
.

2c. zk+1 = zk − 1
γkαk+µ

(
γk(xk+1 − yk+1) + µ(zk − xk+1)

)
.
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*Accelerated SPG I

Theorem (Convergence of AccSPG with strong convexity [15])
Define λk =

∏k

j=1(1− αj) and λ0 = 1. Le:t

1. f is µ-strongly convex,
2. E[‖zk − x?‖2] ≤ D2,
3. E[‖G(xk, θk)−∇f(xk)‖2] ≤M2 .

4. γk = L+ µ
λk−1

and αk =
√
λk−1 +

λ2
k−1
4 − λk−1

2 .

Then,

E[f(yk+1)− f(x?)] ≤
2(L+ µ)D2

k2 +
6M2

µk
.

The accelerated technique can be used to reduce the error term related to
E[‖zk − x?‖2].
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*Accelerated SPG II

Accelerated SPG (AccSPG)

1. Choose y0 = z0 = 0, (γk)k∈N, (αk)k∈N ∈ ]0,+∞[N, α0 = 1, γ0 = L.
2. For k = 0, 1, . . . perform:
2a. xk+1 = (1− αk)yk + αkzk.
2b. yk+1 = proxg/γk

(
xk+1 − 1

γk
G(xk+1, θk)

)
.

2c. zk+1 = zk − 1
αk

(xk+1 − yk+1) .

Theorem (Convergence of AccSPG without strong convexity [15])
Let:
1. E[‖zk − x?‖2] ≤ D2,
2. E[‖G(xk, θk)−∇f(xk)‖2] ≤M2,
3. γk = c(k + 1)3/2 + L for a fixed c > 0, and αk = 2/(k + 2).

Then,

E[f(yk+1)− f(x?)] ≤
3D2L

k2 +
(

3D2c+
5M2

3c

) 1
√
k
.
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Stochastic proximal gradient algorithm with variance reduction
(Prox-SVRG) [13]
Variance reduction

Lemma
Given x̃ ∈ Rp and P(j = k) = 1/m, define

rk = ∇fj(xk)−∇fj(x̃) +∇f(x̃).

Then, conditioned on xk, we have Ejrk = ∇f(xk) and

Ej‖rk −∇f(xk)‖2 ≤ 4Lmax
(
F (xk)− F (x?) + F (x̃)− F (x?)

)
.

Main idea of Prox-SVRG
I Step 1: Maintain an estimate x̃ of x? by updating x̃ periodically (after
n-iteration of SPG).

I Step 2: When x̃ is updated, we also compute the full gradient:

∇f(x̃) =
1
n

n∑
k=1

∇fk(x̃).

I Step 3: Repeats Steps 1&2.
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Stochastic proximal gradient algorithm with variance reduction
Stochastic proximal gradient algorithm with variance reduction
(Prox-SVRG) [13]
1. Choose x̃0 ∈ Rp as a starting point and γ > 0 and n ∈ N+.
2. For s = 0, 1, 2 · · · , perform:

2a. x̃ = x̃s, ṽ = ∇f(x̃), x0 = x̃.
2b. For k = 0, 1, · · ·n− 1, perform:{ Pick ik ∈ {1, . . . ,m} uniformly at random

rk = ∇fik (xk)−∇fik (x̃) + ṽ
xk+1 := proxγg

(
xk − γrk

)
,

(16)

2c. Update x̃s = 1
n

∑n−1
j=0 xj .

Common features
I The Prox-SVRG method uses a multistage scheme to reduce the variance of the

stochastic gradient rk where xk and x̃s tend to x?.
I Learning rate is not necessary tend to 0.
I Each stage, Prox-SVRG uses m+ 2n component gradient evaluations: m for the

full gradient at the beginning of each stage, and 2n for each of the n proximal
stochastic gradient steps.
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Convergence analysis

Assumption A5.
(i) F = f + g is µ-strongly convex
(ii) The learning rate 0 < γ < 1/(4Lmax).
(iii) n is large enough such that

κ =
1

µγ(1− 4γLmax)n
+

4γLmax(n+ 1)
(1− 4γLmax)n

< 1.

Theorem
Assumptions:
I The sequence {x̃s}k≥0 is generated by Prox-SVRG.
I Assumption A5. is satisfied.

Conclusion: Linear convergence is obtained:

EF (x̃s)− F (x?) ≤ κs(F (x̃0)− F (x?)).
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Convergence analysis

Assumption A5.
(i) F = f + g is µ-strongly convex
(ii) The learning rate 0 < γ < 1/(4Lmax).
(iii) n is large enough such that

κ =
1

µγ(1− 4γLmax)n
+

4γLmax(n+ 1)
(1− 4γLmax)n

< 1.

Theorem
Assumptions:
I The sequence {xk}k≥0 is generated by Prox-SVRG.
I Assumption A5. is satisfied.

Conclusion: For any ε > 0 and δ ∈ (0, 1): P (F (x̃s)− F (x?) ≤ ε) ≥ 1− δ whenever

s ≥ log
(F (x̃0)− F (x?)

δε

)
/ log(1/κ)
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Choice of γ and n, and complexity

Chose γ and n such that κ ∈ (0, 1):
For example

γ = 0.1/Lmax, n = 100(Lmax/µ) =⇒ κ ≈ 5/6.

Complexity

EF (x̃s)− F (x?) ≤ ε when s ≥ log(κ−1) log((F (x̃0)− F (x?))/ε)

Since at each stage needs m+ 2n component gradient evaluations, with
n = O(Lmax/µ), we get the overall complexity is

O
(

(m+ Lmax/µ) log(1/ε)
)
.
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Example: `1-regularized least squares revisited- Numerical test

SPG: γt = 100/(100 + t) and Prox-SVRG: γ = 0.1/Lmax

epoch
100

O
b
je

ct
iv

e
ga

p
:
F

(x
t)
!

F
?

10-6

10-5

10-4

10-3

SPG
Prox-SVRG

epoch
100

D
is
ta

n
ce

to
so

lu
ti
on

:
kx

t
!

x
?
k2 2

10-2

10-1

SPG
Prox-SVRG
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*Variance reduction techniques: SAGA

Stochastic Average Gradient (SAGA) [16]
1a. Choose x̃0

i = x0 ∈ Rp,∀i, 0 , q ∈ N and stepsize γ > 0.
1b. Store ∇fi(x̃0

i ) in a table data-structure with length m.
2. For k = 0, 1 . . . perform:
2a. pick ik ∈ {1, . . . ,m} uniformly at random
2b. Take x̃k+1

ik
= xk, store ∇fik (x̃k+1

ik
) in the table and leave

other entries the same.
2c. vk = ∇fik (xk)−∇fik (x̃kik ) + 1

m

∑m

i=1∇fi(x̃
k
i )

3. xk+1 = proxγg(xk − γvk)

Recipe:
In a cycle of q iterations:
I Store last gradient evaluated at each datapoint.
I Previous gradient for datapoint j is ∇fj(x̃kj ).
I Perform q SG-iterations with the following stochastic gradient

vk = ∇fik (xk)−∇fik (x̃kik ) +
n∑
i=1

∇fi(x̃ki ).
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*Convergence of SAGA

F ? := min
x∈Rp

{
(f(x) + g(x)) :=

1
m

m∑
i=1

fi(x) + g(x)
}
.

Theorem (Convergence of SAGA [16])
Set Lmax = max

1≤i≤m
Li, where Li is Lipschitz constant of ∇fi. Suppose that f is

µ-strongly convex and that the stepsize is γ = 1
2(µn+L) with

ρ = 1−
µ

2(µn+ L)
< 1,

C = ‖x0 − x?‖2 +
n

µn+ L
[f(x0)− 〈∇f(x?),x0 − x?〉 − f(x?)]

Then
E[‖xk − x?‖2] ≤ ρkC.

• Allows the constant step-size.

• Obtains linear rate convergence.

Recall that in Lecture 7 we mentioned SARAH. However, how to extend SARAH to
composite optimization is open.
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