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Outline

I Today
1. Primal-Dual methods

I Next week
1. Frank-Wolfe method
2. Primal-dual Frank Wolfe methods
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Recommended readings

I Quoc Tran-Dinh, Olivier Fercoq and Volkan Cevher, A Smooth Primal-Dual
Optimization Framework for Nonsmooth Composite Convex Minimization. to
appear in SIOPT, 2017.

I Y. Nesterov, Smooth Minimization of Non-smooth Functions. Math. Program.,
Ser. A, 103:127-152, 2005.
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Swiss army knife of convex formulations

A primal problem prototype

f? := min
x∈Rp

{
f(x) : Ax− b ∈ K, x ∈ X

}
, (1)

I f is a proper, closed and convex function
I X and K are nonempty, closed convex sets
I A ∈ Rn×p and b ∈ Rn are known
I An optimal solution x? to (1) satisfies f(x?) = f?, Ax? = b and x? ∈ X
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The role of convexity

An example from sparseland b = Ax\ + w

x? ∈ arg min
x∈Rp

{
‖x‖1 : ‖Ax− b‖2 ≤ ‖w‖2, ‖x‖∞ ≤ 1

}
. (SOCP)

Theorem (A model recovery guarantee [20])
Let A ∈ Rn×p be a matrix of i.i.d. Gaussian random variables with zero mean and
variances 1/n. For any t > 0 with probability at least 1− 6 exp

(
−t2/26

)
, we have

∥∥x? − x\
∥∥

2
≤

[
2
√

2s log( p
s

) + 5
4 s

√
n−

√
2s log( p

s
) + 5

4 s− t

]
‖w‖2 B ε, when ‖x\‖0 ≤ s.

Observations:
I perfect recovery (i.e., ε = 0) with n ≥ 2s log( p

s
) + 5

4 s whp when w = 0.

I ε-accurate solution in k = O
(√

2p+ 1 log( 1
ε
)
)
iterations via IPM1

with each iteration requiring the solution of a structured n× 2p linear system.2

I robust to noise.
1There is a subtle yet important caveat here that I am sweeping under the carpet!
2When w = 0, the IPM complexity (# of iterations × cost per iteration) amounts to O(n2p1.5 log( 1

ε
)).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 72



Swiss army knife of convex formulations

A primal problem prototype

f? := min
x∈Rp

{
f(x) : Ax− b ∈ K, x ∈ X

}
, (2)

I f is a proper, closed and convex function
I X and K are nonempty, closed convex sets
I A ∈ Rn×p and b ∈ Rn are known
I An optimal solution x? to (2) satisfies f(x?) = f?, Ax? = b and x? ∈ X

An example from the sparseland

min
x∈Rp

{
‖x‖1 : ‖Ax− b‖2 ≤ κ, ‖x‖∞ ≤ c

}
(SOCP)

Broad context for (2):
I Standard convex optimization formulations: linear programming, convex

quadratic programming, second order cone programming, semidefinite
programming and geometric programming.

I Reformulations of existing unconstrained problems via convex splitting:
composite convex minimization, consensus optimization, . . .
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I X and K are nonempty, closed convex sets
I A ∈ Rn×p and b ∈ Rn are known
I An optimal solution x? to (2) satisfies f(x?) = f?, Ax? = b and x? ∈ X

A key advantage of the unified formulation (2): Primal-dual methods
I decentralized collection & storage of data
I cheap per-iteration costs & distributed computation

Broad context for (2):
I Standard convex optimization formulations: linear programming, convex

quadratic programming, second order cone programming, semidefinite
programming and geometric programming.

I Reformulations of existing unconstrained problems via convex splitting:
composite convex minimization, consensus optimization, . . .
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Performance of optimization algorithms

Exact vs. approximate solutions

I Computing an exact solution x? to (1) is impracticable
I Algorithms seek x?ε that approximates x? up to ε in some sense

A performance metric: Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

Per-iteration time:

first-order methods: Multiplication with A, AT , and appropriate “prox-operators”

A key issue: Number of iterations to reach ε

The notion of ε-accuracy is elusive in constrained optimization!
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Numerical ε-accuracy

• Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

f(x?ε )− f? ≤ ε

f? = min
x∈Rp

f(x)

• Constrained case: We need to also measure the infeasibility of the iterates!

f? − f(x?ε ) ≤ ε !!!

Our definition of ε-accurate solutions [22]
Given a numerical tolerance ε ≥ 0, a point x?ε ∈ Rp is called an ε-solution of (1) if f(x?ε )− f? ≤ ε (objective residual),

dist (Ax?ε − b,K) ≤ ε (feasibility gap),
x?ε ∈ X (exact feasibility for the simple set).

I When x? is unique, we can also obtain ‖x?ε − x?‖ ≤ ε (iterate residual).

• ε can be different for the objective, feasibility gap, or the iterate residual.
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Primal-dual methods for (1):

Plenty . . .

• Variants of the Arrow-Hurwitz’s method:
I Chambolle-Pock’s algorithm [3], and its variants, e.g., He-Yuan’s variant [14].
I Primal-dual Hybrid Gradient (PDHG) method and its variants [10, 12].
I Proximal-based decomposition (Chen-Teboulle’s algorithm) [4].

• Splitting techniques from monotone inclusions:
I Primal-dual splitting algorithms [1, 5, 26, 6, 7].
I Three-operator splitting [8].
• Dual splitting techniques:
I Alternating minimization algorithms (AMA) [11, 26].
I Alternating direction methods of multipliers (ADMM) [9, 16].
I Accelerated variants of AMA and ADMM [7, 13].
I Preconditioned ADMM, Linearized ADMM and inexact Uzawa algorithms [3, 19].
• Second-order decomposition methods:
I Dual (quasi) Newton methods [27].
I Smoothing decomposition methods via barriers functions [17, 23, 29].
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Performance of optimization algorithms

A performance metric: Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

Finding the fastest algorithm within the zoo is tricky!
I heuristics & tuning parameters
I non-optimal rates & strict assumptions
I lack of precise characterizations
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Outline

Methods
Primal methods Primal-dual methods
Quadratic penalty method (QP)∗ Augmented lagrangian method(ALM)∗
→ Inexact → Inexact
→ Linearized (and accelerated) → Linearized (and accelerated)

Dual subgradient method∗
Chambolle Pock’s method∗∗
Primal-dual hybrid gradient method
ADMM∗∗
AMA

∗ Covered in this lecture. ∗∗ Covered in the appendix of the lecture.
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Outline

Penalty and linearization concepts for constrained optimization

Lagrange duality and dual based algorithms
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Warm-up: Quadratic penalty approach

Constrained and penalized formulations:
• Simplified problem (1), with X = Rp:

f? := min
x∈Rp

{
f(x) : Ax = b

}
.

• Penalized function with penalty parameter µk > 0:

Fµk (x) :=
{
f(x) +

µk

2
‖Ax− b‖2

}
.

Main intuition: "mimic" the constrained problem
As µk →∞, Fµk (x) enforces more and more the feasibility.
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A formal justification of the intuition

Theorem
Suppose {xk} are the solutions of minx Fµk (x) and µk →∞.
Then, every limit point x̄ of the sequence {xk} is a solution of the constrained
problem.

Proof
Suppose x? is the solution of the constrained problem, then,

f(x?) ≤ f(x),∀x with Ax = b. (3)

Since xk minimizes Fµk (x) and Ax? = b,

f(xk) +
µk

2
‖Axk − b‖2 ≤ f(x?) +

µk

2
‖Ax? − b‖2 = f(x?). (4)

Rearranging, we get

‖Axk − b‖2 ≤
2
µk

(
f(x?)− f(xk)

)
. (5)

x̄ satisfies limk∈K xk = x̄, for an infinite subsequence K.
Taking the limits of (4) and (5), we obtain that ‖Ax̄− b‖ = 0 and f(x̄) ≤ f(x?), by
using (3) and the assumption that µk →∞.
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Quadratic penalty method

Algorithmic idea
At iteration k:

• Solve
min

x

{
f(x) +

µk

2
‖Ax− b‖2

}
• Set µk+1 > µk.

Quadratic penalty method (QP):
1. Choose x0 ∈ Rp.
2. For k = 0, 1, · · · , perform:

2.a. xk+1 := arg min
x∈X

{
f(x) +

µk

2
‖Ax− b‖2

}
.

2.b. Update µk+1 ≥ µk.
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Limitations of the quadratic penalty approach

Quadratic penalty method (QP):
1. Choose x0 ∈ Rp.
2. For k = 0, 1, · · · , perform:

2.a. xk+1 := arg min
x∈X

{
f(x) +

µk

2
‖Ax− b‖2

}
.

2.b. Update µk+1 ≥ µk.

Limitations
• Solving the subproblems exactly in each iteration (ill-conditioning as µk →∞):

xk+1 := arg min
x∈X

{
f(x) +

µk

2
‖Ax− b‖2

}
.

Common strategies:
I Solve the subproblem inexactly, i.e., up to ε accuracy.
I Linearization to simplify subproblems.
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Introducing linearization

Bottleneck
How to avoid computing at each iteration:

xk+1 = arg min
x

{
f(x) +

µk

2
‖Ax− b‖2

}
.

Linearization idea
• Fact: µk

2 ‖Ax− b‖2 has µk‖A‖2 Lipschitz gradient.

• Estimate around xk:

Fµk (x) = f(x) +
µk

2
‖Ax− b‖2

≤ f(x) +
µk

2
‖Axk − b‖2 + µk〈A>(Axk − b),x− xk〉+

µk‖A‖2

2
‖x− xk‖2

=: Fxk
µk (x).

• Minimize the upper bound Fxk
µk (x) instead of Fµk (x).
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Introducing linearization

Bottleneck
How to avoid computing at each iteration:

xk+1 = arg min
x

{
f(x) +

µk

2
‖Ax− b‖2

}
. (6)

Linearization idea
• We have Fµk (x) ≤ Fxk

µk (x).

• At each iteration:

xk+1 = arg min
x

F
xk
µk (x)

= prox 1
µk‖A‖2 f

(
xk −

1
‖A‖2

A>(‖Axk − b‖)
)
.

• One proximal operator instead of a (potentially) difficult subproblem (6)!
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Per-iteration time: The key role of the prox-operator

xk+1 = prox 1
µk‖A‖2 f

(
xk −

1
‖A‖2

A>(‖Axk − b‖)
)

Recall: Prox-operator

proxf (x) := arg min
z∈Rp

{
f(z) + (1/2)‖z− x‖2

}
.

Key properties:
I single valued & non-expansive since f is a proper convex function.
I distributes when the primal problem has decomposable structure:

f(x) :=
m∑
i=1

fi(xi), and X := X1 × · · · × Xm.

where m ≥ 1 is the number of components.
I often efficient & has closed form expression. For instance, if f(z) = ‖z‖1, then

the prox-operator performs coordinate-wise soft-thresholding by 1.
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Linearized quadratic penalty methods

Linearized quadratic penalty method (LQP):
1. Choose x0 ∈ Rp.
2. For k = 0, 1, · · · , perform:

2.a. xk+1 := prox 1
µk‖A‖2 f

(
xk − 1

‖A‖2 A>(‖Axk − b‖)
)
.

2.b. Update σk such that (1−σk)2

σk
= 1

σk−1
.

2.c. Update µk+1 = √σk.

Accelerated linearized quadratic penalty method (ALQP):
1. Choose x0,y0 ∈ Rp.
2. For k = 0, 1, · · · , perform:

2.a. xk+1 := prox 1
µk‖A‖2 f

(
xk − 1

‖A‖2 A>(‖Axk − b‖)
)
.

2.b. yk+1 := xk+1 + τk+1(1−τk)
τk

(xk+1 − xk).
2.c. Update µk+1 = µk(1 + τk+1).
2.d. Update τk+1 ∈ (0, 1) the unique positive root of τ3 +

τ2 + τ2
kτ − τ

2
k = 0.
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Convergence of LQP and FLQP

Theorem (Convergence [25])
• Let us denote as {λ?} the optimal Lagrange multiplier (more on this later this
lecture!):

• LQP:


f(xk)− f(x?) ≤ ‖A‖2

2β0
√
k
‖x0 − x?‖2 + ‖λ?‖2‖Axk − b‖+ 1√

k
‖λ?‖2

f(x)− f(x?) ≥ −‖λ?‖‖Axk − b‖

‖Axk − b‖ ≤ 1√
k+1

[
‖λ?‖+

(
‖λ?‖2 + 1

β2
0
‖A‖2‖x0 − x?‖2

)1/2
]

• ALQP:


f(xk)− f(x?) ≤ ‖A‖

2

2β0k
‖x0 − x?‖2 + ‖λ?‖2‖Axk − b‖+ 2β0

k
‖λ?‖2

f(x)− f(x?) ≥ −‖λ?‖‖Axk − b‖

‖Axk − b‖ ≤ β0
k+1

[
‖λ?‖+

(
‖λ?‖2 + 1

β2
0
‖A‖2‖x0 − x?‖2

)1/2
]

• These methods almost never work better than the worst case.

• Duality concept is needed for the convergence rate analysis.
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Outline

Penalty and linearization concepts for constrained optimization

Lagrange duality and dual based algorithms
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Lagrange duality and the optimal solution set

Lagrangian function

L(x, λ) := f(x) + λT (Ax− b).

Here, λ ∈ Rn is the vector of Lagrange multipliers (or dual variables) w.r.t. Ax = b.

• Primal problem:
f? := min

x∈Rp

{
f(x) : Ax = b

}
,

• Dual function:

d(λ) := min
x∈X

{
L(x, λ) := f(x) + λT (Ax− b)

}
. (7)

→ Let x?(λ) be a solution of (7) then d(λ) is finite if x?(λ) exists.

• Dual problem: The following dual problem is concave

d? := max
λ∈Rn

d(λ)
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Min-max formulation and dual problem
• Primal problem:

f? := min
x∈Rp

{
f(x) : Ax = b

}
,

• Dual function:

d(λ) := min
x∈X
{L(x, λ) := f(x) + λT (Ax− b)}. (8)

→ Let x?(λ) be a solution of (8) then d(λ) is finite if x?(λ) exists.

• Dual problem: The following dual problem is concave

d? := max
λ∈Rn

d(λ)

Min-max formulation

d? = max
λ∈Rn

d(λ) = max
λ∈Rn

min
x∈X
{f(x) + λT (Ax− b)}

≤ min
x∈X

max
λ∈Rn

{f(x) + λT (Ax− b)} =

{
min
x∈X

f(x) if Ax = b,

+∞ otherwise

Here, the inequality is due to the max-min theorem [21].
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Saddle point

A point (x?, λ?) ∈ X × Rn is called a saddle point of the Lagrange function L if

L(x?, λ) ≤ L(x?, λ?) ≤ L(x, λ?), ∀x ∈ X , λ ∈ Rn.

Recall the minimax form:

max
λ

min
x∈X

{
L(x, λ) := f(x) + λT (Ax− b)

}
.

Illustration of saddle point: L(x, λ) := (1/2)x2 + λ(x− 1) in R2

saddle point x̄

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 72



Saddle point

A point (x?, λ?) ∈ X × Rn is called a saddle point of the Lagrange function L if

L(x?, λ) ≤ L(x?, λ?) ≤ L(x, λ?), ∀x ∈ X , λ ∈ Rn.

Recall the minimax form:

max
λ

min
x∈X

{
L(x, λ) := f(x) + λT (Ax− b)

}
.

Illustration of saddle point: L(x, λ) := (1/2)x2 + λ(x− 1) in R2

saddle point x̄

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 72



Necessary and sufficient condition
Recall the minimax form:

min
x∈X

max
λ∈Rn

{
L(x, λ) := f(x) + λT (Ax− b)

}
Theorem (Necessary and sufficient optimality condition)
Under Slater’s condition: relint(X ) ∩ {x : Ax = b} , ∅, the KKT condition{

0 ∈ ∂xL(x?, λ?) = ATλ? + ∂f(x?),
0 = ∇λL(x?, λ?) = Ax? − b.

is necessary and sufficient for a point (x?, λ?) ∈ X × Rn being an optimal solution for
the primal problem and dual problem:

f? :=
{

min
x∈Rp

f(x)

s.t. Ax = b,
and d? := max

x∈Rn
d(λ).

• By definition of f? and d?, we always have d? ≤ f? (weak duality).

• Under Slater’s condition and X ? , ∅, we have d? = f? (strong duality).

• Any solution (x?, λ?) of the KKT condition is also a saddle point.
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?Slater’s qualification condition

Recall relint(X ) the relative interior of the feasible set X . The Slater condition
requires

relint(X ) ∩ {x : Ax = b} , ∅. (9)

Special cases

I If X is absent, then (9) ⇔ ∃x̄ : Ax̄ = b .

I If Ax = b is absent, then (9) ⇔ relint(X ) , ∅ .

I If Ax = b is absent and X := {x : h(x) ≤ 0}, where h is Rp → Rq is convex,
then

(9)⇔ ∃x̄ : h(x̄) < 0.
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?Example: Slater’s condition

Example
Let us consider the feasible set Dα := X ∩Aα as

X := {x ∈ R2 : x2
1 + x2

2 ≤ 1} Aα := {x ∈ R2 : x1 + x2 = α},

where α ∈ R.

Slater’s condition holds and does not hold
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D1/2 satisfies Slater’s condition – D√2-does not satisfy Slater’s condition
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Dual subgradient method

Recall the dual problem:
d? := max

λ∈Rn
d(λ) (10)

Subgradient ascent method can be applied to solve it.

A plausible algorithmic strategy for minx∈X {f(x) : Ax = b}:
A natural minimax formulation:

(x?, λ?) ∈ arg max
λ

min
x∈X
{L(x, λ) := f(x) + 〈λ,Ax− b〉}.

Lagrangian subproblem: x?(λ) ∈ arg minx∈X L(x, λ)
Dual problem: λ? ∈ arg maxλ {d(λ) := L(x?(λ), λ)}

I λ is called the Lagrange multiplier.
I The function d(λ) is called the dual function, and it is concave!
I The optimal dual objective value is d? = d(λ?).

A basic strategy ⇒ Find λ? and then solve for x? = x?(λ?)
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Dual subgradient method

Properties of dual function

I d is concave, but not necessarily differentiable.
I Subgradient: Ax?(λ)− b ∈ ∂d(λ), where x?(λ) is such that

x?(λ) := arg min
x∈X

{
L(x, λ) := f(x) + λT (Ax− b)

}
.

Dual subgradient method (DSGM):
1. Choose λ0 ∈ Rp.
2. For k = 0, 1, · · · , perform:

2.a. x?(λk) := arg min
x∈X
{L(x, λ) := f(x) + λT (Ax− b)}.

2.b. Compute the subgradient ∇d(λk) := Ax?(λk)− b.

2.c. Update λk+1 := λk +
R

√
k + 1

∇d(λk) , where R is a

given constant.
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Example: Nonsmoothness of the dual function
Consider a constrained convex problem:

min
x∈R3

{
f(x) := x2

1 + 2x2
}
,

s.t. 2x3 − x1 − x2 = 1,
x ∈ X := [−2, 2]× [−2, 2]× [0, 2].

The dual function is defined as
d(λ) := min

x∈X

{
x2

1 + 2x2 + λ(2x3 − x1 − x2 − 1)
}

is concave and nonsmooth as illustrated in the figure below.
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nonsmooth peak
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Convergence of DSGM

Well-definedness
I Problem below may not have solution x?(λ) for any λ. Then DSGM is not

well-defined except if X is bounded.

x?(λ) := arg min
x∈X
{L(x, λ) := f(x) + λT (Ax− b)}.

I Impractical to evaluate R? := ‖λ0 − λ?‖2, use an upper bound R of R?.

Theorem (Convergence)
Assume that ‖Ax?(λk)− b‖ ≤Md for all k ≥ 0. Then {λk} generated by DSGM
satisfies

d? − d(λk) ≤
MdR?√
k + 1

,∀k ≥ 0,

where R? := minλ? ‖λ0 − λ?‖2. Convergence rate of DSGM is O(1/
√
k).

Special cases

1. If f is strongly convex, then d is smooth and its gradient is Lipschitz continuous,
d ∈ F1,1

L (Rp). Gradient and fast gradient methods can be used to solve the dual
problem.
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Efficiency considerations for the dual problem

Subgradient method
1. Choose λ0 ∈ Rn.
2. For k = 0, 1, · · · , perform:

λk+1 = λk + αkvk,
where vk ∈ ∂d(λk) and αk is the step-size.

Accelerated gradient method
1. Choose u0 = λ0 ∈ Rn.
2. For k = 0, 1, · · · , perform:

λk = uk + 1
L
∇d(uk),

uk+1 = λk + ρk(λk − λk−1),
where L is the Lipschitz constant, and
ρk is a momentum parameter.

Subgradient method for the dual
Assume that the following conditions
1. ‖v‖2 ≤ G for all v ∈ ∂d(λ), λ ∈ Rn.
2. ‖λ0 − λ?‖2 ≤ R

Let the step-size be chosen as
αk = R

G
√
k
. Then, the subgradient

method satisfies

min
0≤i≤k

d? − d(λi) ≤
RG
√
k

≤ ε̄

SGM: O
(

1
ε̄2

)
× subgradient calculation

GM: O
(

1
ε̄

)
× gradient calculation

AGM: O
(

1√
ε̄

)
× gradient calculation

Impact of smoothness
(Lipschitz gradient) d(λ) has Lipschitz
continuous gradient iff

‖∇d(λ)−∇d(η)‖2 ≤ L‖λ− η‖2

for all λ, η ∈ dom(d) and we indicate this
structure as d(λ) ∈ FL.

For all d(λ) ∈ FL, the gradient method
with step-size 1/L obeys

d? − d(λk) ≤
2LR2

k + 4
≤ ε̄.

This is NOT the best we can do.
There exists a complexity lower-bound

d? − d(λk) ≥
3LR2

32(k + 1)2 ,∀d(λ) ∈ FL,

for any iterative method based only on
function and gradient evaluations.

For all d(λ) ∈ FL, the accelerated gradient
method with momentum ρk = k+1

k+3 obeys

d? − d(λk) ≤
2LR2

(k + 2)2≤ ε̄

This is NEARLY the best we can do.
There exists a complexity lower-bound

d? − d(λk) ≥
3LR2

32(k + 1)2 ,∀d(λ) ∈ FL,

for any iterative method based only on
function and gradient evaluations.
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When is the dual function smooth?

Smoothness of dual function
• When f(x) is γ-strongly convex, the dual function d(λ) is ‖A‖

2

γ
-Lipschitz gradient.

(Strong convexity) f(x) is γ-strongly convex iff f(x)− γ
2 ‖x‖

2
2 is convex.

• However, in general, dual problem is convex but nonsmooth.

Augmented Lagrangian
Augmented Lagrangian: Lµ(x, λ) := L(x, λ) + (µ/2)‖Ax− b‖22, where µ > 0 is a
penalty parameter.

Augmented dual function:

dµ(λ) := min
x∈X

{
Lµ(x, λ) := f(x) + λT (Ax− b) + (µ/2)‖Ax− b‖22

}
.

• dµ is smooth and Lipschitz gradient

Different perspectives
• We will motivate Augmented Lagrangian Method (ALM) from dual perspective.

• ALM can also be motivated by penalty approach, see [2, 18].
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Augmented Lagrangian method

Augmented dual function:

dµ(λ) := min
x∈X

{
Lµ(x, λ) := f(x) + λT (Ax− b) + (µ/2)‖Ax− b‖22

}
. (11)

Key properties of dµ
• dµ is concave and smooth and

∇dµ(λ) = Ax?µ(λ)− b,

where x?µ(λ) is the solution of (11).

• ∇dµ is Lipschitz continuous with a Lipschitz constant Ld := µ−1, i.e.:

‖∇dµ(λ)−∇dµ(λ̂)‖ ≤ µ−1‖λ− λ̂‖, ∀λ, λ̂ ∈ Rn.
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Example: Behavior of the augmented Lagrangian dual function
Consider a constrained convex problem:

min
x∈R3

{
f(x) := x2

1 + x2
2
}
,

s.t. 2x3 − x1 − x2 = 1,
x ∈ X := [−2, 2]× [−2, 2]× [0, 2].

The augmented Lagrangian dual function is defined as

dµ(λ) := min
x∈X

{
x2

1 + x2
2 + λ(2x3 − x1 − x2 − 1) + (µ/2)‖2x3 − x1 − x2 − 1‖22

}
is concave and smooth as illustrated in the figure below.
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Augmented dual problem

Dual problem:

d? := max
λ∈Rn

{
d(λ) = min

x∈X
f(x) + 〈λ,Ax− b〉

}
. (12)

Augmented dual problem:

d?µ := max
λ∈Rn

{
dµ(λ) = min

x∈X
f(x) + 〈λ,Ax− b〉+

µ

2
‖Ax− b‖2, µ > 0

}
. (13)

Relation between augmented dual problem and dual problem
Under Slater’s condition and X ? , ∅, we have
I The dual solution set of (13) coincides with the one of the dual problem (12).
I f? = d? = d?µ for any µ > 0.

The augmented dual problem (13) is smooth and convex ⇒ Gradient and Fast
gradient methods can be applied to solve it.
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Augmented Lagrangian method

Augmented Lagrangian method (ALM):
1. Choose λ0 ∈ Rp and µ > 0.
2. For k = 0, 1, · · · , perform:

2.a. Solve (11) to compute ∇dµ(λk) := Ax?µ(λk)− b.

2.b. Update λk+1 := λk + µ∇dµ(λk).

ALM can be accelerated by Nesterov’s optimal method.
Fast augmented Lagrangian method (FALM)

1. Choose λ0 ∈ Rp and µ > 0. Set λ̃0 := λ0 and t0 := 1
2. For k = 0, 1, · · · , perform:

2.a. Solve (11) to compute ∇dµ(λ̃k) := Ax?µ(λ̃k)− b.
2.b. Updateλ

k+1 := λ̃k + µ∇dµ(λ̃k),
λ̃k+1 := λk+1 + ((tk − 1)/tk+1)(λk+1 − λk),
tk+1 := (1 +

√
1 + 4t2

k
)/2.
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k+1 := λ̃k + µ∇dµ(λ̃k),
λ̃k+1 := λk+1 + ((tk − 1)/tk+1)(λk+1 − λk),
tk+1 := (1 +

√
1 + 4t2

k
)/2.
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Convergence of ALM and FALM

Theorem (Convergence [15])
• Let {λk} be the sequence generated by ALM. Then

d? − dµ(λk) ≤
‖λ0 − λ?‖22
2µ(k + 1)

, k ≥ 0.

• Let {λk} be the sequence generated by FALM. Then

d? − dµ(λk) ≤
2‖λ0 − λ?‖22
µ(k + 2)2 , k ≥ 0.

• Important observation: The right-hand side of both estimates depends on µ. When
µ gets large, the right-hand side decreases.

• Guarantees are given for the dual problem and not for the primal!

• We can show guarantees for the primal iterate and averaged primal iterate, see [22].
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Drawbacks and enhancements

At each step, ALM solves

x?µ(λ) := arg min
x∈X

{
Lµ(x, λ) := f(x) + λT (Ax− b) + (µ/2)‖Ax− b‖22

}
. (14)

Drawbacks
1. Drawback 1: The quadratic term ‖Ax− b‖22 in (14) destroys the separability as

well as the tractable proximity of f .
2. Drawback 2: Solving (14) exactly is impractical.
3. Drawback 3: No theoretical guarantee for choosing appropriate values of κ.

Enhancements
1. Allow inexactness of solving (14), while guaranteeing the same convergence rate.
2. Update the penalty parameter κ

I Increasing ρ: Lead to the increase of ill-condition in (14).
I Adaptively update κ: Often heuristic

3. Process the quadratic term ‖Ax− b‖22 by linearization, alternating, etc.
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Going back to primal: Linearized Augmented Lagrangian method

Bottleneck

xk+1 := arg min
x∈X

{
Lµ(x, λ) := f(x) + λ>(Ax− b) + (µ/2)‖Ax− b‖22

}
.

• Recall: Linearization idea

xk+1 := arg min
x∈X

L
xk
µ (x, λk)

:= prox 1
µ‖A‖2 f

(
xk −

1
‖A‖2

A>
( 1
µ
λk + (Axk − b)

))
Linearized augmented Lagrangian method (LALM)

1. Choose xn ∈ Rn, λ0 ∈ Rp and κ, µ > 0.
2. For k = 0, 1, · · · , perform:

2.a. Update{
xk+1 := prox 1

µ‖A‖2 f

(
xk − 1

‖A‖2 A>
(

1
µ
λk + (Axk − b)

))
,

λk+1 := λ̃k + µ(Axk − b).
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Convergence of Linearized ALM

Theorem (Convergence [28])
Let µ > 0 and define x̄k+1 = 1

k

∑k

i=1 xi+1. Then, the iterates of LALM satisfy:

∥∥Ax̄k − b
∥∥ ≤ 1

k‖

(
1
2
‖x1 − x?‖2 +

max
{

(1 + ‖λ?‖)2, 4‖λ?‖2
}

µ

)

|f(x̄k)− f(x?)| ≤
1
k

(
1
2
‖x1 − x?‖2 +

max
{

(1 + ‖λ?‖)2, 4‖λ?‖2
}

µ

)

• Guarantees are for the primal.

• No need to solve difficult subproblems at each iteration.

• Guarantees are of the same order as ALM, but slower than FALM at the expense of
easy subproblems.

• Guarantees are for x̄k, and not xk.
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Example: Last iterate vs average iterate of LALM

Problem: Basis pursuit
Given A ∈ Rn×p and b ∈ Rn, solve

F ? := min
x∈Rp

{‖x‖1 : Ax = b} .

Data generation
• A is a row-normalized standard Gaussian matrix.

• x? is a k-sparse vector generated randomly.

• Noiseless case: b := Ax?.

• Noisy case: b := Ax? +N (0, 10−3).
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Example: Last iterate vs average iterate of LALM
• Noiseless case.
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• Noisy case.
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?A composite reformulation

• Focus the following template in the sequel:

minx {f(x) : Ax = b,x ∈ X}

• Fundamentally the same as the composite form: minx∈X f(x) + g(Ax)

Lasso X = Rp f(x) = λ‖x‖1 g(z) = 1
n
‖z− b‖22

Square-root Lasso X = Rp f(x) = λ‖x‖1 g(z) = 1√
n
‖z− b‖2

SDP X = {x � 0,x′ = x} f(x) = tr(bx) g(z) =
{

0 if z = b
+∞ otherwise
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?Lasso is essentially “easy”

minx∈X f(x) + g(Ax)

• Revelation: Lasso can be solved as if the problem is fully smooth!

I not with subgradient descent!

• Structures in the composite form

I g has Lipschitz gradient in `2-norm (i.e., ‖∇g(u)−∇g(v)‖2 ≤ L‖u− v‖2)

Lasso: g(x) = 1
2‖x‖

2
2 ⇒ L = 1.

I f : X → R ∪ {+∞} has a “tractable” proximal operator

proxf (x) := arg min
u∈X

f(u) +
1
2
‖u− x‖22

Lasso: f(x) = ‖x‖1,X = Rp ⇒ proxf is soft thresholding.

[proxf (x)]i =
{

0, if |xi| ≤ λ
xi − λsign(xi), if |xi| > λ
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?Famous Algorithms I

minx∈X f(x) + g(Ax)

• FISTA (aka. accelerated proximal gradient method, aka. Nesterov acceleration):

At iteration k:

xk+1 = proxf/L‖A‖2

(
yk −

1
L ‖A‖2

A>∇g(Ayk)
)

yk+1 = xk+1 +
k + 1
k + 3

(
xk+1 − xk

)
• Convergence: We have

f(xk) + g(Axk)− f(x?)− g(Ax?) ≤
4L ‖A‖2 ‖x? − x0‖22

(k + 1)2

• Problem: Strong convexity, otherwise optimal!

• Solution: Use a corrected momentum term or periodically restart the momentum.
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?A useful minimax reformulation for the general case

minx∈X f(x) + g(Ax)

• If 0 ∈ ri(domg −Adomf) then the optimization problem is equivalent to

max
y∈Y

min
x∈X

f(x) + 〈y,Ax〉 − g∗(y)

where g∗ is the Fenchel conjugate of g: g∗(y) := maxx〈x,y〉 − g(x).

I Constrained case: g(z) =
{

0 if z = b
+∞ otherwise

, and hence, g∗(y) = 〈b,y〉
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?Duality gap

• The duality gap:

G(x,y) = f(x) + g(Ax) + g∗(y) + f∗(−A>y)

= max
ȳ∈Y

(
f(x) + 〈ȳ,Ax〉 − g∗(ȳ)

)
− min

x̄∈X

(
− g∗(y) + 〈x̄,A>y〉+ f(x̄)

)
I Note the symmetric roles between (f, g,A) and (−g∗,−f∗,A>)

• Useful properties:

I Convex as a function of (x,y)

I G(x,y) = 0 iff (x,y) = (x?,y?)
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?Famous algorithms II

• Chambolle-Pock method (dual perspective):

At iteration k:

xk+1 = arg min
x∈X

f(x) + 〈yk, Ax− c〉+
β

2

∥∥x− xk∥∥2
X

yk+1 = yk +
β − ε
‖A‖2

(
A(2xk+1 − xk)− c

)
• Convergence: We have

G(xk,yk) ≤
1
k

(
β

2
D2
X +

‖A‖2

2(β − ε)
D2
Y

)
where DX is the diameter of domf and DY is the diameter of domg∗.

• Problem: We have DY = +∞.
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?Smoothing the indicator function (primal perspective)

minx∈X f(x) + g(Ax)

I Constrained case: g(z) =
{

0 if z = b
+∞ otherwise

, and hence, g∗(y) = 〈b,y〉

• A smoothed estimate of g by Nesterov around a center point λ:

gβ(z;λ) = max
y∈Y

(
〈z,y〉 − g∗(y)−

β

2
‖y− λ‖2

)
I gβ(z;λ) is differentiable wrt z and ∇zgβ(z;λ) is 1

β
-Lipschitz

I gβ(Axk, λ) = 〈λ,Axk − b〉+ 1
2β

∥∥Axk − b
∥∥2
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?A first attempt

• Nesterov’s smooth minimization of non-smooth functions approach:

Choose β > 0 and λ.

Run FISTA on x 7→ f(x) + gβ(Ax, λ) as a proxy for f(x) + g(Ax).

• Convergence:

f(xk) + gβ(Axk, λ)− f(x?)− g(Ax?) ≤
4‖A‖2

∥∥x0 − x?
∥∥2

β(k + 1)2

f(xk) + g(Axk)− f(x?)− g(Ax?) ≤
4‖A‖2

∥∥x0 − x?
∥∥2

β(k + 1)2 + βDY

• Problem: The optimal choice for β is β = ε
2DY

where DY = +∞.
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?Our fundamental theorem
• Denote the (primal) smoothed gap function at y? as

Sβ(x, ẏ) := f(x) + gβ(Ax; ẏ)− f(x?)

Theorem
If β and Sβ(x, ẏ) are small, we have an approximate solution:

‖Ax− b‖ ≤ β
[
‖λ? − λ‖+

(
‖λ? − λ‖2 + 2β−1Sβ(x;λ)

)1/2]
f(x)− f(x?) ≥ −‖λ?‖‖Ax− b‖

f(x)− f(x?) ≤ Sβ(x, λ) + ‖λ?‖‖Ax− b‖+
β

2
‖λ? − λ‖2

Algorithmic idea:
• Minimize the smoothed problem (i.e. augmented Lagrangian),

min
x
f(x) + λ>(Ax− b) +

1
2β
‖Ax− b‖2, (15)

with any method and obtain Sβ(x, λ).

• Make sure β → 0.

• Use the previous theorem to obtain guarantees for primal objective and feasibility,
instead of dual problem!
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?A Linearized Accelerated Quadratic Penalty Method

• Apply accelerated proximal gradient method (or FISTA) to minimize the augmented
Lagrangian, with λ := 0, i.e. quadratic penalty function.

Accelerated Smoothed Gap Reduction (ASGARD)
1. Choose x0 ∈ Rp and β > 0. Set x̄0 := x̂0 := x0 and τ0 := 1
2. For k = 0, 1, · · · , perform:


x̄k+1 := proxβ‖A‖−2f

(
x̄k − ‖A‖−2A>(Ax̂k − b)

)
,

x̂k+1 := x̄k+1 + τk+1(1−τk)
τk

(x̄k+1 − x̄k),
τk+1 ∈ (0, 1) root of τ3 + τ2 + τ2

kτ − τ
2
k = 0,

βk+2 = βk+1
1+τk+1

.

• Recall: ASGARD corresponds to linearized, accelerated quadratic penalty method!
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?Convergence theorem

Theorem
The iterates of ASGARD drive the smoothed gap to zero: Sβk (x̄k, λ) = O(1/k), and also
provides a O(1/k) convergence guarantee in function value as well as feasibility:∥∥Ax̄k − b

∥∥ ≤ β1

k + 1

[∥∥λ?∥∥+

√
‖λ?‖2 +

‖A‖2

β2
1
‖x̄0 − x?‖2

]
f(x̄k)− f(x?) ≥ −‖λ?‖‖Ax̄k − b‖

f(x̄k)− f(x?) ≤
1
k

‖A‖2

2β1

∥∥x̄0 − x?
∥∥2

+
∥∥λ?∥∥∥∥Ax̄k − b

∥∥+
β1

k+1

∥∥λ?∥∥2
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?Effect of restarting

• Periodically restarting the algorithm with nonzero λ helps tremendously in practice.
How to formalize?
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?Restarted algorithm

• ASGARD changes βk each iteration. How about decreasing Sβk (xk, λk) in a
sequential manner?

• A double loop procedure:

I Apply accelerated proximal gradient method (or FISTA) to
minx f(x) + gβk (Ax;λ) for some number of iterations mk

I Restart λ and decrease βk
I Repeat for k = k + 1.
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?Double Loop ASGARD
Double Loop ASGARD

1. Choose x0 ∈ Rp and β > 0. Set x̄0 := x̂0 := x0 and τ0 := 1
2. For k = 0, 1, · · · , perform:

2.a For i = 0, 1, · · · ,mk − 1, perform:
x̂ki = (1− τk)x̄ki + τkx̃ki ,
x̃ki+1 = proxβ‖A‖−2f

(
x̃ki − ‖A‖

−2A>(βλk +Ax̂ki − b)
)
,

x̄ki+1 = x̂ki + τk(x̃ki+1 − x̃ki ),
τk+1 = 2

k+2 ,

2.b Restart primal and dual variable updates
x̄k+1

0 = x̃k+1
mk

λk+1 = λk + 1
βk

(Ax̄k+1
i − b)

τ0 = 1
βk+1 = βk

ω

mk+1 = mkω

• Corresponds to inexact augmented Lagrangian method with explicit inner
termination rule.
• We can prove guarantees of the same order as ASGARD for the last iterate x̄k,
see [24].
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?ADMM3

Primal problem with a specific decomposition structure

f? := min
x:=(u,v)

{f(x) := g(u) + h(v) : Bu + Cv = b, u ∈ U , v ∈ V}

I X := U × V - nonempty, closed, convex and bounded.
I A := [B,C].

The Fenchel dual problem

d? := max
λ∈Rn

{
d(λ) := −g∗U (−BTλ)− h∗V (−CTλ) + 〈b, λ〉

}
I g∗U and h∗U are the Fenchel conjugate of gU := g + δU and hV := h+ δV , resp.

The dual function

d(λ) := min
u∈U

{
g(u) + 〈BTλ,u〉

}
︸                                ︷︷                                ︸

d1(λ)

+ min
v∈V

{
h(v) + 〈CTλ,v〉

}
︸                               ︷︷                               ︸

d2(λ)

−〈b, λ〉.

3Q. Tran-Dinh and V. Cevher, Splitting the Smoothed Primal-dual Gap: Optimal Alternating Direction Methods
Tech. Report, 2015, (http://arxiv.org/pdf/1507.03734.pdf) / (http://lions.epfl.ch/publications)
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?Standard ADMM as the dual Douglas-Rachford method
We can derive ADMM via the Douglas-Rachford splitting on the dual:

0 ∈ B∂g∗U (−BTλ) + C∂h∗V (−CTλ) + c,

which is the optimality condition of the dual problem.

Douglas-Rachford splitting method
zkg := prox

η−1
k
g∗U (−BT ·)(λ

k)

zkh := prox
η−1
k
h∗V (−CT ·)(2zkg − λk)

λk+1 := λk + (zkg − zkh).

Standard ADMM
uk+1 := arg min

u∈U

{
g(u) + 〈λk,Bu〉+

ηk

2
‖Bu + Cvk − b‖2

}
vk+1 := arg min

v∈V

{
h(v) + 〈λk,Cv〉+

ηk

2
‖Buk+1 + Cv− b‖2

}
λk+1 := λk + ηk

(
Buk+1 + Cvk+1 − b

)
.

Here, ηk > 0 is a given penalty parameter.
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?Splitting the smoothed gap

Smoothing the gap

I The dual components d1 and d2 are nonsmooth. We smooth one, e.g., d1, using:

d1
γ(λ) := min

u∈U

{
g(u) +

γ

2
‖B(u− uc)‖2 + 〈λ,Bu〉

}
I Recall: We also approximate f by fβ as:

fβ(x) := f(x) +
1

2β
‖Ax− b‖2 → f(x) as x becomes feasible

Three key properties of d1
γ

I d1
γ is concave and smooth.

I ∇d1
γ is Lipschitz continuous with L := γ−1.

I d1
γ approximates d1 as:

d1
γ(λ)− γDU ≤ d1(λ) ≤ d1

γ(λ),

where DU := max
{

(1/2)‖B(u− uc)‖2 : u ∈ U
}
.
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?Our ADMM scheme: D-R on the smoothed gap
I Our new ADMM scheme consists of three steps:

ADMM step, acceleration step, and primal averaging.

Step 1: The main ADMM steps
ûk+1 := arg min

u∈U

{
gγk+1 (u) + 〈λ̂k,Bu〉+

ρk

2
‖Bu + Cv̂k − b‖2

}
v̂k+1 := arg min

v∈V

{
h(v) + 〈λ̂k,Cv〉+

ηk

2
‖Bûk+1 + Cv− b‖2

}
λk+1 := λ̂k + ηk

(
Bûk+1 + Cv̂k+1 − b

)
.

where gγ(·) := g(·) + γ
2 ‖B(· − uc)‖2.

?The dual accelerated and primal averaging steps

I Step 2: [Dual acceleration] λ̂k is computed as:

λ̂k := (1− τk)λk +
τk

βk
(Buk + Cvk − b).

I Step 3: [Averaging] The primal iteration xk := (uk,vk) is updated as:

uk+1 := (1− τk)uk + τkûk+1 and vk+1 := (1− τk)vk + τkv̂k+1.
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?How do we update parameters?

Duality gap and smoothed gap functions

I The duality gap: G(w) := f(x)− d(λ), where w := (x, λ).

I The smoothed gap: Gγβ(w) := fβ(x)− dγ(λ) with dγ := d1
γ + d2.

Model-based gap reduction
The gap reduction model provides conditions to derive parameter update rules:

Gγk+1βk+1 (wk+1) ≤ (1− τk)Gγkβk (wk) + τk(ηk + ρk)DX

where γk+1 < γk, βk+1 < βk and DX := max
x∈X

{
(1/2)‖Bu + Cv− b‖2

}
.

Update rules

I The smoothness parameters: γk+1 := 2γ0
k+3 and βk := 9(k+3)

γ0(k+1)(k+7) .

I The penalty parameters: ηk := γ0
k+3 and ρk := 3γ0

(k+3)(k+4) .

I The step-size τk := 3
k+4 ⇒ O

(
1
k

)
.
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?Convergence guarantee & Other cases of interest
Convergence rate guarantee
I Rate on the primal objective residual and constraint feasibility:

f(xk)− f? ≤ 2γ0DU
k+2 + 3γ0DX

2(k+3)

(
1 + 6

k+2

)
⇒ O

(
1
k

)
‖Axk − b‖ ≤ 18D∗

d
γ0(k+2) + 6

k+2

√
DU + 3(k+8)

2(k+3)DX ⇒ O
(

1
k

)
where D∗d is the diameter of the dual solution set Λ?.

I Lower bound: −D∗d‖Axk − b‖ ≤ f(xk)− f?.
I Rate on the dual objective residual:

d? − d(λk) ≤
18(D∗d)2

γ0(k + 2)
+

6D∗d
k + 2

√
DU +

3(k + 8)
2(k + 3)

DX ⇒ O
( 1
k

)
.

Special cases: cf., http://lions.epfl.ch/publications
I Full-column rank or orthogonality of A: Using smoothing term (γ/2)‖u− uc‖2.
I Strong convexity of g: We do not need to smooth d1.
I Decomposability of g and U : Using smoothing term

(γ/2)
s∑
i=1

‖Bi(ui − uc,i)‖2.
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?A comparison to the theoretical bounds

A stylized example: Square-root LASSO

f? := min
u∈U,v∈V

{
f(x) := ‖u‖2 + κ ‖v‖1 : B(v)− u = c

}
.
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Empirical convergence

Theoretical bound

I See the preprint for more examples, enhancements, ...
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