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I This lecture
1. Review of probability theory
2. Learning as an optimization problem

I Next lecture
1. Basic concepts in convex analysis
2. Complexity theory review
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Recommended reading

I Probability and Measure, Patrick Billingsley, Wiley-Interscience, 1995.
I Chapter 7, 8, & 9 in K. P. Murphy, Machine Learning: A Probabilistic

Perspective, MIT Press, 2012.
I V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Inf.

Theory, vol. 10, no. 5, pp. 988–999, Sep. 1999.
I ?Chapter 5 in A. W. van der Vaart, Asymptotic Statistics, Cambridge Univ.

Press, 1998.
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Motivation

Example (Gene Mutation)
Each gene has a mutation probability, say µ. We want to find out µ through a series
of independent experiments.

For instance, Phenylketonuria is a disease caused by mutations of the PAH gene. In
Australia, there are roughly 2400 patients out of a 24 million population.

How would you estimate the mutation probability, if you were an Australian doctor?
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Motivation

Key questions

I How do we model the problem rigorously?
I How well can we do, after the model is specified?
I How can we solve the problem?

(Partial) answers

I How do we model the problem rigorously? Probability theory
I How well can we do, after the model is specified? Statistical guarantees
I How can we solve the problem? Optimization algorithms
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Motivation

Formal Setup
We introduce the rigorous framework for probability theory, and discuss several
important statistical problems that motivate our subsequent optimization lectures.
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Basic concepts in probability theory

Definition (Sample space)
The sample space Ω of an experiment is the set of all possible outcomes of that
experiment.

Example
If the experiment is testing whether a gene will mutate, the sample space is the set
given by {mutation, no mutation}.

Definition (Event)
An event E corresponds to a subset of the sample space; i.e., E ⊆ Ω.

Definition (Probability measure)
Probability measure P (E) maps event E from Ω onto the interval [0, 1] and satisfies
the following Kolmogorov axioms:
I P (E) ≥ 0,
I P (Ω) = 1 and
I P

(⋃n

i=1 Ei
)

=
∑n

i=1 P (Ei), where E1, ..., En are mutually exclusive (i.e.
Ei ∩ Ej = ∅ for all i , j). Such events are called mutually exclusive or disjoint.
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The rules of probability

Let A and B denote two events in a sample space Ω, and let P (B) , 0.

Definition (Marginal probability)
The probability of an event (A) occurring (P (A)).

Definition (Joint probability)
P (A,B) is the probability of event A and event B occurring. Symmetry property
holds, i.e. P (A,B) = P (B,A).

Definition (Conditional probability)
P (B|A) is the probability that B will occur given that A has occurred.

Rules
I Sum rule: P (A) =

∑
B
P (A,B)

I Product rule: P (A,B) = P (B|A)P (A).
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Bayes’ rule

Bayes’ rule

P (A|B) =
P (B|A)P (A)

P (B)
Constituents:
I P (A), the prior probability, is the probability of A before B is observed.
I P (A|B), the posterior probability, is the probability of A given B, i.e., after B is

observed.
I P (B|A) is the probability of observing B given A. As a function of A with B

fixed, this is the likelihood.
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Union of non-disjoint events

Definition (Principle of inclusion-exclusion)
The probability of the union of n events is

P

(
n⋃
i=1

Ei

)
=

n∑
k=1

(−1)k+1
∑

1≤i1≤...≤ik≤n

P (Ei1 ∩ ... ∩ Eik ),

where the second sum is over all subsets of k events.
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Union of non-disjoint events

Example (winning craps or lose big)
Let us go to a casino and play craps. You throw two dices. If the outcome is 7 or 11,
you win immediately. If it is 2, 3, or 12, you lose immediately. If the outcome is any
other number, say x, you continue throwing until the outcome is x or 7. You win in
the former, and lose in the latter case.

Suppose you like big numbers, and you are content with seeing any outcome equal to
or larger than 10. You also like winning. What is the probability that you’ll be
satisfied in the first throw? Let A denote the event of throwing 7 or 11 (winning in
the first throw), and let B be the event of outcome equal to or larger than 10. Then,
P (A) =

8
36

, P (B) =
6
36

and P (A ∩B) =
2
36

.

By the inclusion-exclusion principle, P (A ∪B) = P (A) + P (B)− P (A ∩B) =
1
3
.
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Random variable

Definition
A real-valued random variable is a function that associates a value to the outcome of
a randomized experiment X : Ω→ R.

Example

I Whether a gene will mutate: a function from Ω = {mutation, no mutation} to
{1, 0}.

I Number of mutations in a sequence of n experiments: function from
Ω = {mutation, no mutation}n → N ∪ {0}.
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Discrete random variable

Probability mass function (pmf)
The probability mass function is the function from values to its probability,
PX(x) = P (X = x) for x ∈ X (i.e., a countable subset of the reals) with properties:
I PX(x) ≥ 0 for every x ∈ X ,
I
∑

x∈X PX(x) = 1
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Discrete random variable

Example

I Bernoulli distribution - distribution of a binary variable x ∈ {0, 1}; single
parameter µ ∈ [0, 1] represents the probability of x = 1:

Bern(x|µ) = µx(1− µ)1−x.

I Binomial distribution - probability of observing m occurrences of 1 in a set of N
samples from a Bernoulli distribution:

Bin(m|N,µ) =
(N
m

)
µm(1− µ)N−m.

I Recall the gene mutation example: Let X be the random variable such that
PX(x = 1) = µ, and PX(x = 0) = 1− µ. Then X ∼ Bern. If we conduct N
experiments and let m denote the number of mutations, then the random
variable has binomial distribution.
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Probability density function (pdf)

• A continuous random variable can have uncountably infinite possible values.

Probability density function (pdf)
The probability density function of a continuous random variable X is an integrable
function p(x) satisfying the following:
1. The density is nonnegative: i.e., p(x) ≥ 0 for any x,
2. Probabilities integrate to 1: i.e.,

∫∞
−∞ p(x)dx = 1,

3. The probability that x belongs to the interval [a, b] is given by the integral of
p(x) over that interval: i.e.,

P (a ≤ X ≤ b) =
∫ b

a

p(x)dx.

Basic rules of probability

1. Analog of sum rule: p(x) =
∫
p(x, y)dy

2. Product rule: p(x, y) = p(y|x)p(x).
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Expectations and variances

Definition (Expectation (1st moment, mean))

E[X] =


∑

x∈X xP (X = x) discrete∫∞
−∞ xp(x)dx continuous

Definition (Variance (2nd moment))

V[X] =


∑

x∈X (x− E[X])2P (X = x) discrete∫∞
−∞(x− E[X])2p(x)dx continuous

Definition (Conditional expectation and Covariance)

E[X|Y = y] =
∑
x∈X

xP (X = x|Y = y)

cov[x, y] = E
[(
x− E[X]

)(
y − E[Y ]

)]
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Normal (Gaussian) Distribution

Gaussian distribution
For x ∈ Rd, the multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp
(
−

1
2

(x− µ)TΣ−1(x− µ)
)
,

where µ ∈ Rd is the mean, Σ ∈ Rd×d is the covariance matrix and |Σ| denotes the
determinant of Σ.

I In the case of a single variable

N (x|µ, σ2) =
1

(2πσ2)1/2 exp
(
−

1
2σ2 (x− µ)2

)
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Basic statistics

Parametric estimation model
A parametric estimation model consists of the following four elements:
1. A parameter space, which is a subset X of Rp

2. A parameter x\, which is an element of the parameter space
3. A class of probability distributions PX := {Px : x ∈ X}, parametrized by x ∈ X
4. A sample b, which follows the probability distribution b ∼ Px\ ∈ PX

Statistical estimation seeks to approximate the value of x\, given X , PX , and b.

Definition (Estimator)
An estimator x̂ is a mapping that takes X , PX , and b as inputs, and outputs a value
in Rp.

I The output of an estimator depends on the sample, and hence, is random.
I The output of an estimator is not necessarily equal to x\.
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Ordinary least-squares estimator

Ordinary least-squares estimator (OLS)
The ordinary least-squares estimator is given by

x̂OLS ∈ arg min
x

{
‖b−Ax‖2

2 : x ∈ Rp
}
.
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Ordinary least-squares estimator: An intuitive model

Gaussian linear model
Let x\ ∈ Rp. Let b := Ax\ + w ∈ Rn for some matrix A ∈ Rn×p, where w is a
Gaussian vector with zero mean and covariance matrix σ2I.

The probability density function px(·) is given by

px(b) =
( 1
√

2πσ2

)n
exp
(
−

1
2σ2 ‖b−Ax‖2

2

)
.

Therefore, the maximum likelihood (ML) estimator is defined as

x̂ML ∈ arg min
x

{
− log px(b) = −

n

2
log(2πσ2) +

1
2σ2 ‖b−Ax‖2

2 : x ∈ Rp
}
,

which is equivalent to

x̂ML ∈ arg min
x

{
‖b−Ax‖2

2 : x ∈ Rp
}
.

OLS is the ML estimator for the Gaussian linear model.
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Maximum-likelihood estimator

Recall the general setting.

Parametric estimation model
A parametric estimation model consists of four elements:
1. A parameter space, which is a subset X of Rp,
2. A parameter x\, which is an element of the parameter space,
3. A class of probability distributions PX := {Px : x ∈ X}, parametrized by x ∈ X ,
4. A sample b, which follows the probability distribution Px\ ∈ PX .

Definition (Maximum-likelihood estimator)
The maximum-likelihood (ML) estimator is given by

x̂ML ∈ arg min
x
{− log px(y)} ,

where px(·) denotes the probability density function or probability mass function of
Px, for x ∈ X .
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Gene mutation

Gene mutation
Suppose the mutation probability is P (mutation) = µ, and you want to estimate µ.
Suppose you have observed m mutations in N experiments.

The probability mass function is given by the binomial distribution

p(# mutations = m|µ) =
(N
m

)
µm(1− µ)N−m.

The maximum-likelihood estimator is

µML = arg min
µ∈[0,1]

−m logµ− (N −m) log(1− µ).

It is easy to see that µML = m
N
.
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Logistic regression

Logistic regression [1]
Let x\ ∈ Rp. Let a1, . . . ,an ∈ Rp be given. The sample is given by
b := (b1, . . . , bn) ∈ {−1, 1}n, where each bi is a Bernoulli random variable satisfying

P {bi = 1} = 1− P {bi = −1} =
[
1 + exp

(
−
〈
ai,x\

〉)]−1
,

and b1, . . . , bn are independent.

The probability mass function px(·) is given by

px(b) = Πni=1 [1 + exp (−bi 〈ai,x〉)]−1 .

Therefore, the maximum-likelihood estimator is defined as

x̂ML ∈ arg min
x

{
− log px(b) =

n∑
i=1

log [1 + exp (−bi 〈ai,x〉)] : x ∈ Rp
}
.

I x̂ML defines a linear classifier. For any new ai, i ≥ n+ 1, we can predict the
corresponding bi by predicting bi = 1 if 〈ai, x̂ML〉 ≥ 0, and bi = −1 otherwise.
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Graphical model learning (self-study)

Graphical model selection
Let Θ\ ∈ Rp×p be a positive-definite matrix. The sample is given by x1, . . . ,xn ∈ Rp,
which are i.i.d. random vectors with zero mean and covariance matrix Θ\−1.

When xi’s are Gaussian random vectors, the probability density function pΘ(·) is
given by

pΘ(x1, . . . ,xn) = Πni=1

[
(2π)−p/2 det

(
Θ−1

)−1/2
exp
(
−

1
2

xTi Θxi
)]

= (2π)−np/2 det(Θ)n/2 exp

[
−

1
2

n∑
i=1

(
xTi Θxi

)]
Therefore, the ML estimator is defined as

x̂ML ∈ arg min
Θ

{
−
np

2
log(2π)−

n

2
log det (Θ) +

n

2
Tr
(
Σ̂Θ
)

: Θ ∈ Sp++

}
.
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Checking the fidelity

Given an estimator x̂ ∈ arg minx∈X {F (x)}, we need to address two key questions:

1. Is the formulation reasonable?

2. What is the role of the data size?
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Standard approach to checking the fidelity

Standard approach

1. Specify a performance criterion L(x̂,x\) that should be small if x̂ = x\.
2. Show that L is actually small in some sense when some condition is satisfied.

Example
Take the `2-error L(x̂,x\) :=

∥∥x̂− x\
∥∥2

2
as an example. Then we may verify the

fidelity via one of the following ways, where ε denotes a small enough number:
1. E

[
L(x̂,x\))

]
≤ ε (expected error),

2. P
(
L(x̂,x\) ≥ ε

)
≤ δ for some δ depending on ε (consistency),

3.
√
n(x̂− x\) converges in distribution to N (0, I) (asymptotic normality),

4.
√
n(x̂− x\) converges in distribution to N (0, I) in a local neighborhood (local

asymptotic normality).
if some condition is satisfied. Such conditions typically revolve around the data size.
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Standard approach: Expected error

Gaussian linear model
Let x\ ∈ Rp and let A ∈ Rn×p. The samples are given by b = Ax\ + w, where w is
a sample of a Gaussian random vector w ∼ N (0, σ2I).

What is the performance of the ML estimator

x̂ML ∈ arg min
x∈Rp

{
‖b−Ax‖2

2
}

?

Theorem (Performance of the LS estimator [2])
If A is a matrix of independent and identically distributed (i.i.d.) standard Gaussian
distributed entries, and if n > p+ 1, then

E

[∥∥x̂ML − x\
∥∥2

2

]
=

p

n− p− 1
σ2 → 0 as

n

p
→∞.
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?Approach 2: Consistency

Graphical model learning (self-study)
Let x1, . . . ,xn be samples of a sub-Gaussian random vector with zero mean and some
unknown positive-definite covariance matrix Σ\ ∈ Rp×p. (Sub-Gaussian random
variables will be defined in recitation.)

What is the performance of the M -estimator Σ̂ := Θ̂
−1

, where

Θ̂ML ∈ arg min
Θ∈Sp++

{
1
n

n∑
i=1

[
− log det (Θ) + xT

i Θxi

]}
?

I If y = f(x), then ŷML = f(x̂ML). This is called the functional invariance property
of ML estimators.

Theorem (Performance of the ML estimator [3])
Suppose that the diagonal elements of Σ\ are bounded above by κ > 0, and each
Xi/

√(
Σ\
)
i,i

is sub-Gaussian with parameter c. Then

P

({∣∣∣(Σ̂ML
)

i,j
−
(
Σ\
)

i,j

∣∣∣ > t

})
≤ 4 exp

[
−

nt2

128 (1 + 4c2)κ2

]
→ 0 as n→∞

for all t ∈
(
0, 8κ

(
1 + 4c2

))
.
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Basic statistical learning

Statistical Learning Model [4]
A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables (ai, bi) ∈ A× B, i = 1, . . . , n, following an
unknown probability distribution P.

2. A class (set) F of functions f : A → B.
3. A loss function L : B × B → R.

Definition
Let (a, b) follow the probability distribution P and be independent of
(a1, b1), . . . , (an, bn). Then, the risk corresponding to any f ∈ F is its expected loss:

R(f) := E(a,b) [L(f(a), b)] .

Statistical learning seeks to find a f? ∈ F that minimizes the risk, i.e., it solves

f? ∈ arg min
f
{R(f) : f ∈ F} .

I Since P is unknown, the optimization problem above is intractable.
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Empirical risk minimization (ERM)

By the law of large numbers, we can expect that for each f ∈ F ,

R(f) := E [L(a, b)] ≈
1
n

n∑
i=1

L(f(ai), bi)

when n is large enough, with high probability.

Empirical risk minimization (ERM) [4]
We approximate f? by minimizing the empirical average of the loss instead of the risk.
That is, we consider the optimization problem

f̂n ∈ arg min
f

{
1
n

n∑
i=1

L(f(ai), bi) : f ∈ F

}
.
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Least squares revisited

Recall that the LS estimator is given by

x̂LS ∈ arg min
{
‖b−Ax‖2

2 : x ∈ Rp
}

= arg min

{
1
n

n∑
i=1

(bi − 〈ai,x〉)2 : x ∈ Rp
}
,

where we define b := (b1, . . . , bn) and ai to be the i-th row of A.

A statistical learning view of least squares
This corresponds to a statistical learning model, for which
I the sample is given by (ai, bi) ∈ Rp × R, i = 1, . . . , n,
I the function class F is given by F := {fx(·) := 〈·,x〉 : x ∈ Rp}, and
I the loss function is given by L(fx(a), b) := (b− fx(a))2.

The corresponding ERM solution is

f̂n(·) := 〈·, x̂LS〉 .

I Thus the LS estimator also seeks to, given a, minimize the error of predicting the
corresponding b by a linear function in terms of the squared error.
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Practical Issues

Given an estimator x̂ ∈ arg minx∈X {F (x)} of x\, we discussed two key questions:

1. Is the formulation reasonable?
2. What is the role of the data size?

Consider the estimation error in the `2-norm:
∥∥x̂− x\

∥∥
2
.

I Is
∥∥x̂− x\

∥∥
2
enough to evaluate the performance of the estimator x̂?
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Practical Issues

No, because in general we can only numerically approximate the solution of

x̂ ∈ arg min
x∈Rp

{F (x)} .

Implementation
How do we numerically approximate x̂?

Practical performance
Denote the numerical approximation by x?ε . The practical performance is governed by∥∥x?ε − x\

∥∥
2
≤ ‖x?ε − x̂‖2︸         ︷︷         ︸

approximation error

+
∥∥x̂− x\

∥∥
2︸          ︷︷          ︸

statistical error

.

How do we evaluate ‖x?ε − x̂‖2?

I Recall that an ε-approximation solution is any point x?ε such that

F (x?ε )− F (x̂) ≤ ε.
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?Time-data trade-off [5]

An alternative view: Joint study of approximation/statistical errors∥∥x?ε − x\
∥∥

2
≤ ‖x?ε − x̂‖2︸         ︷︷         ︸

approximation error

+
∥∥x̂− x\

∥∥
2︸          ︷︷          ︸

statistical error

.

How do we evaluate ‖x?ε − x̂‖2 +
∥∥x̂− x\

∥∥
2
?

We may fix a precision ε, and consider the approximation and statistical error jointly:∥∥x?ε − x\
∥∥

2
≤ ‖x?ε − x̂‖2︸         ︷︷         ︸

approximation error

+
∥∥x̂− x\

∥∥
2︸          ︷︷          ︸

statistical error

≤ ε.
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Practical Issues

How do we numerically approximate x̂ ∈ arg minx∈Rp {F (x)} for a given F?

General idea of an optimization algorithm
Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.

How do we evaluate the approximation error ‖x?ε − x̂‖2?

General concept about the approximation error
It depends on the characteristics of the function F and the chosen numerical
optimization algorithm.
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Need for convex analysis

General idea of an optimization algorithm
Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.

General concept about the approximation error
It depends on the characteristics of the function F and the chosen numerical
optimization algorithm.

Role of convexity
Convexity provides a key optimization framework in obtaining numerical
approximations at theoretically well-understood computational costs.

To precisely understand these ideas, we need to understand basics of convex analysis.
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