Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 4: Unconstrained, smooth minimization |

Laboratory for Information and Inference Systems (LIONS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2017)

~ ICPH

lions@epfl £



License Information for Mathematics of Data Slides

> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

> Non-Commercial

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes — unless they get the licensor’s
permission.

> Share Alike

> The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor's work.

> Full Text of the License

. V
ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 1 -ﬂ ﬂ.


http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

Outline

> This lecture
1. Unconstrained convex optimization: the basics
2. Gradient descent methods

> Next lecture

1. Gradient and accelerated gradient descent methods
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Recommended reading

» Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical
Optimization, Springer, 2006.

» Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization,
Cambridge university press, 2009.

> Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific,
1999.

> Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex
Optimization: A Basic Course, Vol. 87, Springer, 2004.
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Motivation

Motivation

This lecture covers the basics of numerical methods for unconstrained and smooth
convex minimization.
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Smooth unconstrained convex minimization

Problem (Mathematical formulation)

The unconstrained convex minimization problem is defined as:

= e f(x)

> f is a proper, closed and smooth convex function, —oo < f* < +o0.

> The solution set S* := {x* € dom(f) : f(x*) = f*} is nonempty.
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Example: Maximum likelihood estimation and M-estimators

Problem

Let x% € RP be unknown and by, ..., by, be i.i.d. samples of a random variable B with
p-d.f. pey(b) € P = {px(b) : x € RP}.

Goal: estimate x% from by, ..., bp.

Optimization formulation (ML estimator)

n

) . 1 a .

e Zln [px(6:)] p = e o f(x)
=1

Theorem (Performance of the ML estimator [?, ?])

The random variable X, satisfies

lim VI ™Y? (S — x) £ Z ~ N(0,T),

n—00

where
J:= —E[V3In[px(B)]]

N

is the Fisher information matrix associated with one sample. Roughly speaking,

[ VAa=2 (=) [~ T =p = | [

= O(p/n) |
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Example: Maximum likelihood estimation and M-estimators

Problem

Let x8 € RP be unknown and by, ..., by, be i.i.d. samples of a random variable B with
p.d.f. pyy(b) € P := {px(b) : x € RP}.
Goal: estimate x! from bi,...,bn.

Optimization formulation (ML estimator)

n
1
Xy := arg min ¢ —— E In [px(b;)] p = arg min f(x)
XERP n XERP
i=1

Optimization formulation (1 -estimator)

In general, we can replace the negative log-likelihoods by any appropriate, convex g;'s

n
.1
;%12 - Zgz(bz,x) .
i=1
—
f(x)
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Approximate vs. exact optimality

Is it possible to solve a convex optimization problem?

"In general, optimization problems are unsolvable” - Y. Nesterov [?]

> Even when a closed-form solution exists, numerical accuracy may still be an issue.

» We must be content with approximately optimal solutions.

Definition

We say that x7 is e-optimal in objective value if

fxH—fr<e.

Definition

We say that x} is e-optimal in sequence if, for some norm || - ||,

Ixt —x*]| < e,

> The latter approximation guarantee is considered stronger.
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A gradient method

Lemma (First-order necessary optimality condition)

Let x* be a global minimum of a differentiable convex function f. Then, it holds that

VF(x*) =0.

Fixed-point characterization
Multiply by -1 and add x* to both sides to obtain a fixed point condition,

x* =x* — aVf(x*) forall 0 # a« €R

Gradient method
Choose a starting point x° and iterate
xFHL = xF — 0, Vf(xF)

where ay, is a step-size to be chosen so that x* converges to x*.

L]
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When does the gradient method converge?

Lemma
Assume that
1. There exists x* € dom(f) such that V f(x*) = 0.

2. The mapping ¥(x) = x — o'V f(x) is contractive for some «: i.e., there exists
v € [0,1) such that

[¥(x) = ¢(2)| <Allx =zl for all x,z € dom(f)

Then, for any starting point x° € dom(f), the gradient method converges to x*.
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When does the gradient method converge?

Lemma

Assume that
1. There exists x* € dom(f) such that V f(x*) = 0.

2. The mapping ¥(x) = x — o'V f(x) is contractive for some «: i.e., there exists
v € [0,1) such that

[¥(x) = ¢(2)| <Allx =zl for all x,z € dom(f)

Then, for any starting point x° € dom(f), the gradient method converges to x*.

Proof.
If we start the gradient method at x° € dom(f), then we have
ka+l _ X*” — ka _ an(xk) _ X*”
= [lp(x*) — (x| (VF(x*) = 0)
< ll* — x| (contraction)

<A — <)

We then have that the sequence {xk} converges globally to x* at a linear rate.
m]
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Short (but important) detour: convergence rates

Definition (Convergence of a sequence)

The sequence u

Convergence rates: the “speed" at which a sequence converges

>

>

lions@epfl

1 .,2 k

Ve>0,3KeEN:k>K=|uf—u*|<e

sublinear: if there exists ¢ > 0 such that

,u? ... uF ... converges to u* (denoted limy_; ., uf = u*), if

lu* —u*|| =0~

linear: if there exists o € (0, 1) such that

[u* —u*| = O(a*)

Q-linear: if there exists a constant r € (0, 1) such that

. ”uk+1

k—oo |luk —u*||

superlinear: If » = 0, we say that the sequence converges superlinearly.

—ul _

quadratic: if there exists a constant p > 0 such that

. Huk+1

R
lim il

k—oo |[uk —u*||2
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Example: Convergence rates

Examples of sequences that all converge to u* =0

> Sublinear: u* = 1/k

> Linear: u* = 0.5%

CONVERGENCE RATES

T

> Superlinear: u

Remark

lions@epfl
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Tteration (k)

CONVERGENCE RATES

30

10
—LINEAR
- - -SUPERLINEAR

k _

» Quadratic: ufF = 0.521‘:

k.—k

CONVERGENCE RATES

6 8
Iteration (k)
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For unconstrained convex minimization as in (1), we always have f(x*) — f* > 0.
Hence, we do not need to use the absolute value when we show convergence results
based on the objective value, such as f(x*) — f* < O(1/k?), which is sublinear.

Lt



Contractive maps and convexity

Proposition (Contractivity implies convexity with structure)

Let f € C? and define 1)(x) = x — aV f(x), with a > 0.
If 1(x) is contractive, with a constant contraction factor v < 1, then f € ]-—Ei

Proof.
Consider y = x + tAx. By the contractivity assumption it must hold that

llp(x +tAx) —p(x)|| < tyl[Ax| Vt.
We also have that
1
lim —[|¢(x + tAx) — ¥ (x)|| = lim ||Ax — & (Vix+tAx) — Vi(x)) ||
t—0 t t—0 t
= (T-aV2f(x)) Ax|
< v||Ax]| (by assumption)
The inequality implies (derivation on the board) that

1— 1
0< 1< v2f(x) < 217y
o o

which can be reinterpreted as f € ]-—EL with L = 1-%, and p = % (next!). m]
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Gradient descent methods

Definition
Gradient descent (GD) Starting from x° € dom(f), update {x*};> as

xFtL = 3k — 0 VF(xF) = xF + app”.
Notice that p¥ := —V f(x*) is the steepest descent (anti-gradient) search direction.

Key question: how to choose oy, to have descent/contraction?

. )|
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Gradient descent methods

Definition
Gradient descent (GD) Starting from x° € dom(f), update {x*};> as

xFtL = 3k — 0 VF(xF) = xF + app”.
Notice that p¥ := —V f(x*) is the steepest descent (anti-gradient) search direction.

Key question: how to choose oy, to have descent/contraction?

We need structure!

We use F to denote the class of smooth
convex functions.

(The domain of each function will be apparent
from the context.)

L — Lipschitz gradient

. — strongly convex Self-concordant

Next few slides: structural assumptions
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L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient convex functions)

Let f: Q — R be differentiable and convex, i.e., f € F1(Q). Then, f has a Lipschitz
gradient if there exists L > 0 (the Lipschitz constant) s.t.

V) = VIillz < LIx = yl2, ¥x,y€Q.

Proposition (L-Lipschitz gradient convex functions)

fe Fl(Q) has L-Lipschitz gradient if and only if the following function is convex:

L
h(x) = EIIXH% —fx) vxeQ.

Definition (Class of 2-nd order Lipschitz functions)

The class of twice continuously differentiable functions f on O with Lipschitz
continuous Hessian is denoted as .7-'2’2(@) (with 2 — 2 denoting the spectral norm)

IV2f(x) = V2f(¥)ll2m2 < Lix —yll2, ¥x,y €Q,

> .FlL’m: functions that are [-times differentiable with m-th order Lipschitz property.
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Example: Logistic regression

Problem (Logistic regression)

Given a sample vector a; € RP and a binary class label b; € {—1,+1} (i=1,...,n),
we define the conditional probability of b; given a; as:

P(bilae, X1, 1) oc 1/(1+ e 7065 04,

where x% € RP is some true weight vector, . € R is called the intercept. How to
estimate x! given the sample vectors, the binary labels, and 11 ?

Optimization formulation

n
1 7
D — Z log(1 + exp(—b;(a; x + p)))
=1
f(x)
Structural properties
Let A = [a1,...,an]” (design matrix), then f € F2'', with L = L[|ATA|
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u-strongly convex functions

Definition
A function f: Q@ - RU {+0o0},Q C RP is called p-strongly convex on its domain if
and only if for any x, y € Q and a € [0, 1] we have:

I
flox + (1= a)y) < af(x) + (1 — ) f(y) — Sl —a)lx — yli3.
The constant p is called the convexity parameter of function f.
> The class of k-differentiable u-strongly functions is denoted as ]-'l’f(Q).

> Strong convexity = strict convexity, BUT strict convexity = strong convexity

f(@) f(z)

af(r) + (1 - a)f(z2) af(r) + (1 —a)f(w2)

i
Lot =)o = I3

f(z1)es

N P e

I / T2 Iy
azy + (1 - @)

Figure: (Left) Convex (Right) Strongly convex
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u-strongly convex functions (Alternative)

Definition

A convex function f: Q — R is said to be p-strongly convex if
K 2
h(x) = 76a) = 5 12
is convex, where p is called the strong convexity parameter.

> The class of k-differentiable u-strongly functions is denoted as }'Zf(Q).

» Non-smooth functions can be p-strongly convex: e.g., f(x) = [x[l1 + &§[Ix/|3.

f(z)

af(a) + (1 - a)f(2)

o € S + (1~ a)z)

xr / Z2 g
ary + (1 — o)z axy + (1 —a)ay
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Example: Least-squares estimation

Problem
Let x4 € RP and A € R™*P (full column rank). Goal: estimate x!, given A and

b:Axh+w,

where w denotes unknown noise.

Optimization formulation (Least-squares estimator)
. 2
min — [[b — Ax||5 .
xERP 2
f()

Structural properties

> Vf(x) = AT(Ax —b), and V2 f(x) = ATA.

> ApI X V2f(x) < A1I, where A1 > A2 > ... > ), are the eigenvalues of ATA.

> It follows that L = A1 and pn = Ay, If Ap >0, then f € Fi’i, otherwise
feFi.
> Since rank(AT A) < min{n, p}, if n < p, then \p = 0.
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Self-concordant functions

Definition (Self-concordant functions in 1-dimension)

A convex function ¢ : R — R is self-concordant if

" (B)] < 20" (£)%/2, VteR.

V
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Self-concordant functions

Definition (Self-concordant functions in 1-dimension)

A convex function ¢ : R — R is self-concordant if

" (B)] < 20" (£)%/2, VteR.

Affine Invariance of self-concordant functions
Let ¢(t) = p(at + B) where a # 0. Then, @ is self-concordant iff ¢ is.

3 |
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Self-concordant functions

Definition (Self-concordant functions in 1-dimension)

A convex function ¢ : R — R is self-concordant if

" (B)] < 20" (£)%/2, VteR.

Affine Invariance of self-concordant functions
Let ¢(t) = p(at + B) where a # 0. Then, @ is self-concordant iff ¢ is.

Important remarks of self-concordance

1. Generalize to higher dimension: A convex function f : R™ — R is said to be
(standard) self-concordant if |¢" (t)| < 20" (t)3/2, where ©(t) := f(x + tv) for
all t € R, x € domf and v € R" such that x 4+ tv € domf.

2. Affine invariance still holds in high dimension.

3. Self-concordant functions are efficiently minimized by the Newton method and its
variants (see Lecture 6).

-
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Back to gradient descent methods

Gradient descent (GD) algorithm

L ...,xk .. according to

Starting from x° € dom(f), produce the sequence x
xFHl = x*F — 0, V(xF) = xF + ap”.

Notice that p* := —V f(x¥) is the steepest descent (anti-gradient) direction.
Key question: how do we choose o, to have descent/contraction?

. )
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Back to gradient descent methods

Gradient descent (GD) algorithm

Starting from x° € dom(f), produce the sequence x!, ..., x", ... according to

xFHl = x*F — 0, V(xF) = xF + ap”.

Notice that p* := —V f(x¥) is the steepest descent (anti-gradient) direction.

Key question: how do we choose o, to have descent/contraction?

Step-size selection
Case 1: If f € ]-'i‘l(]Rp), then:

> We can choose 0 < aj < % The optimal choice is oy, := %
> o can be determined by a line-search procedure:
1. Exact line search: o, := arg min f(x* — aV f(x")).
2. Back-tracking line search witha;:]mijo—GoIdstein's condition:
e —avfE") < f(x*) = cal VFE)I?, e (0,1/2].
Case 2: If f € fi‘,L(RI’), then:
> We can choose 0 < ay < Li-m The optimal choice is oy, := %ﬂ

Case 3: If f € F2(Q), then, a bit more complicated (more later).
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Towards a geometric interpretation |

Recall:
> Let f € F7(RP) with gradient V f(x) and Hessian V2 f(x).

> First-order Taylor approximation of f at y:

fx) > fy) +(Viy),x—y)

f(x)

y LIV y %) X

» Convex functions: 15t-order Taylor approximation is a global lower surrogate.

i V
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Towards a geometric interpretation Il

Lemma
Let f € .Fz’l(Q). Then, we have:

fy) =) = (VF(x),y —x) <

N |

Hy - X”g, vay € Q

Proof.
By the Taylor's theorem:

1
f(y)=f(X)+<Vf(X),yf><>+/ (VIf(x+7(y —%) = Vf(x),y — x)dr.
0

Therefore,
1

f(y)*f(X)*<Vf(X)7yf><>§/ IVf(x+ 7y —x)) = V)" - lly —x|ldr
0

! L
SLHy—XHg/ Tdr = Elly—XH%
0

]
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Gradient descent methods: geometrical intuition

. V
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Gradient descent methods: geometrical intuition

Structure in optimization: x* Xk

1) fx) =2 fx) (VD) x — %)

. V
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Gradient descent methods: geometrical intuition

Majorize:
F06) < FO8) + (TF6),x =) + 2 ¥ 1= Qo )

Minimize:
Xk

= arg min Q,(x, x¥)
x

1 . I
= argmin ||x — (xk - va(Xk)>
kL k -
=x" - =V f(x") [
L .
Structure in optimization: x* xh+1xk

(1) fx) > )+ (VD) x—xF) .
(2)  f00) < FOE) (VD) x = xF) + Sllx = x"[3

. |
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Gradient descent methods: geometrical intuition

Majorize:

L'>L (2)

F) < ) +(VF(x),x = xM) + %Hx = x*[3 = Qu(x,x")
Minimize:
k+

xFH = argmin Q. (x, x*)
x

1 2
= argn;in X — <x’c — fo(xk)) H
= \.

Structure in optimization: x* X
1) )= f(x) + (V). x —xF) I xFH
(2)  f00) < FOE) (VD) x = xF) + Sllx = x"[3

-
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Gradient descent methods: geometrical intuition

Majorize:
L -
F(x) < FEF) + (V) x = xF) + Flx - x| = Qr(x,x")
Minimize:
xF*1 = argmin Qr(x,x")

= argm)zn x — (x"" -~ %Vf(xk)> HZ f(X)
X

Structure in optimization:

(1) fx) = fx) + (V") x - x") .
(2)  f00) < FOE) (VD) x = xF) + S llx = x"[3
B fx)= f(xk)+<Vf(X’“)7X*Xk>+gIIX*XkII§
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Convergence rate of gradient descent

Theorem
JeFd, a=1: F6) = £ < T = %13
2,1 2 B * L—p\* *
fer., a_m. Ix* — x*||2 < I+s Ix° — x*||2
B
2,1 1 k L—p\2, o
f € ]:L,,u,’ o = Z : HX 7x*||2 < m ”X 7x*||2

L—p _ wk—1 — L e 2
Note that Thn = rfl where Kk := o is the condition number of V= f.
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Convergence rate of gradient descent

Theorem
ferr, o= f(xk)—f(X*)Smeo—X*H%
2,1 _ 2 B % L—p\F o &
ferF, a_m. Ix* — x*||2 < I+s Ix° — x*||2
k
2,1 L. k L—p\2, o
f € ]:L,,u,’ o = Z : HX 7x*||2 < m ”X 7x*||2

L—p _ wk—1 — L e 2
Note that TTn = mil’ where Kk := o is the condition number of V= f.

Remarks

> Assumption: Lipschitz gradient. Result: convergence rate in objective values.
» Assumption: Strong convexity. Result: convergence rate in sequence of the
iterates and in objective values.

> Note that the suboptimal step-size choice a = % adapts to the strongly convex
case (i.e., it features a linear rate vs. the standard sublinear rate).

(U]
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Example: Ridge regression

Optimization formulation
» Let A € R"*P and b € R™ given by b = Ax! 4+ w, where w € R™ is some noise.
» A classical estimator of xb, known as ridge regression, is

. 1 2, P2
min f(x):= = ||b — Ax||5 + =||x]|5.
min f(x) = 5 [Ib— Axlff + £ x|}

where p > 0 is a regularization parameter

Remarks
Dyl o
> fG]-'L’H with:
> L =X (ATA) +p;

> =X (ATA) + p;
> where A1 > ... > X, are the eigenvalues of ATA.

> The ratio kK = ﬁ decreases as p increases, leading to faster linear convergence.

> Note that if n < p and p = 0, we have u =0, hence f € .Fi’l and we can expect
only O(1/k) convergence from the gradient descent method.

. V
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Example: Ridge regression

Case 1:
n = 500,p = 2000, p =0

1 bound GD|

®
=10t
10°
10°
o 1000 2000 3000 4000 5000
Number of iterations
10°

[ 05 1 15 2 25 3 35
Time (s)

|
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Example: Ridge regression

Case 1: Case 2:
n = 500,p = 2000, p =0 n = 500, p = 2000, p = 0.01),(ATA)

10"
1 bound GD|
10°
o 100
" 10°
Ze Z -
N Theoretical bound GD
. 10 Pheoretical bound GD-LL
10 ap
2 X @Dl
% 1000 2000 3000 4000 5000 0% 200 400 600 800 1000 1200
Number of iterations Number of iterations
10° 1010
LN
10°
z
=
1010
10? 107
0 05 1 15 2 25 3 35 0 ol 02 03 04 05 06 07 08
Time (s) Time (s)

|
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*Adagrad: An adaptive step-size gradient method

Recall the gradient descent:

=k ),
where 1 > 0 is the step-size.
Two potential improvements

1. Instead of fixing an n for all k, we may consider 7.

2. Instead of applying 7 to all coordinates of V f(x*), we may consider
[7:V f(x*);]; (coordinate-wise step-size).
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*Adagrad: An adaptive step-size gradient method
Recall the gradient descent:
XM = xF — v f(xY),

where 1 > 0 is the step-size.

Two potential improvements

1. Instead of fixing an n for all k, we may consider 7.

2. Instead of applying 7 to all coordinates of V f(x*), we may consider
[7:V f(x*);]; (coordinate-wise step-size).

Example (Adaptive gradient methods)
Many algorithms build upon this idea, for instance
1. Adagrad [?].
2. Adam [?]
3. RMSprop [?].
4. Adadelta [?].

We present the simplest version of Adagrad below.
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*Adagrad: An adaptive step-size gradient method

Definition (Adagrad)
Define

k
GE=>Y" [vreh)]?.
=l

The Adagrad iterate is defined by, for each coordinate i,

xPH = xF - "Gk (V6]

K3

ol

1

Intuition:

1. Gf is increasing in k for all ¢, and hence the step-sizes for all coordinates are
decreasing in k.

2. The step-size for each coordinate is different. Smaller accumulated gradient (Gf)
indicates the requirement for a larger step-size for more progress.

3. Slower convergence rate (O <ﬁ> [?]), but very effective in practice.
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Example: Effect of n in Adagrad
Ridge regression (n = 500, p = 2000, p = 0)

1 P
i =2 |b— Ax|Z + 5x|12.
min fe) =3 xlz + 5 lxll2

108 . . . .
o 10°
=
©
o0
2
E g0t} g
¥
Py
|
kS Adagrad 5 = 1072
408 ——Adagrad n = 10" 1
——Adagrad n =1
Adagrad n = 10"
—— Adagrad 5 = 10?
102 GD i i L
0 1000 2000 3000 4000 5000

Number of iterations
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Example: Ridge regression

Case 1:
n = 500,p = 2000, p =0

®
=10t
10°
10°
o 1000 2000 3000 4000 5000
Number of iterations
10°

[ 05 1 15 2 25 3 35
Time (s)
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Example: Ridge regression

Case 1:
n = 500,p = 2000, p =0

1000 2000 3000 4000 5000
Number of iterations

05 1 15 2 25 3 35
Time (s)

Case 2:

n = 500, p = 2000, p = 0.01),(ATA)

10"

f* in log-scale
a:

2 [Z= Theoretical bound GD
‘10‘" wwune Theoretical bound GD-pL
+ @D
X GD-yL
Lot K Adagrad
0 200 400 600 800 1000
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*From gradient descent to mirror descent
Gradient descent as a majorization-minimization scheme
> Majorize f at x* by using L-Lipschitz gradient continuity
L
Fx) < FOF) + (VF(F), x —xF) + 7 llx = x5 = Qx, x¥)

> Minimize Q(x,x") to obtain the next iterate x*+1

xF ! = argmin Q(x, x*) = Vf(x*) + L(x*¥Tt —xF) =0
X

1
xFHl = xk ZVf(xk)

Other majorizers

We can re-write the majorization step as
F(x) < FxF) +(VF(E), x = xF) + ad(x,x")
where d(x,x*) = %HX — x¥||2 is the Euclidean distance and o = L.

> Can we use a different function d(x,x") that is better suited to minimizing f?
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*Bregman divergences

Definition (Bregman divergence)

Let ¢ : S — R be a continuously-differentiable and strictly convex function defined on
a closed convex set S. The Bregman divergence (d,,) associated with ¢ for points x
and y is:

dy (%, y) = ¥(x) = ¥(y) = (VP(¥), x — y)

> 9(-) is referred to as the Bregman or proximity function.

> The Bregman divergence satisfies the following properties:
(a) dy(x,y) > 0 for all x and y with equality if and only if x =y
(b) Define q(x) := dy (x,y) for a fixed y, then Vq(x) = Vi(x) — Vi(y)
(c) Forallx,y,z €S, dy(x,y) = dy(x,2) +dy(z,y) + ((x — 2), Vi(y) — V¢(2))
(d) Forall x,y € 8, dy(x,y) + dy (¥, %) = ((x — ¥), Vi(x) — V()

> The Bregman divergence becomes a Bregman distance when it is symmetric (i.e.
dy (x,y) = dy(y,x)) and satisfies the triangle inequality.

> “All Bregman distances are Bregman divergences but the reverse is not true!”
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*Bregman divergences

> The Bregman divergence is the vertical distance at x between t and the tangent
of ¢ at y, see figure below

y X

> The Bregman divergence measures the strictness of convexity of ().
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*Bregman divergences

Table: Bregman functions 1)(x) & corresponding Bregman divergences/distances d.;, (x,y)®.

Name (or Loss) [ Domain? [ P (x) [ dy (%, )
Squared loss R z2 (@ —y)°
Itakura-Saito divergence Ryt — logx — —log | — -1
Y Y
Squared Euclidean distance RP l112 lIx —yli2
Squared Mahalanobis distance | RP (x, Ax) (x—¥), Ax —yN°®
zj
Entropy distance p-simplex z; logz; z; log [ —
Yi
i i
p Ti
Generalized I-divergence x+ x,; logx; log| — ) — (11 - yi)
Yi
i i
von Neumann divergence sixl’ XlogX — X tr (X (logX —log¥Y) — X + Y)°
logdet divergence Si“’ —logdet X tr (XY*1> ~ log det (xy*l) —p

@ z,yeR, x,y €RP and X,Y € RPXP,
b R, and Ry denote non-negative and positive real numbers respectively.

cAe Sixp, the set of symmetric positive semidefinite matrix.
d p-simplex:= {x € RP : Zf:l z;=1,2; >0,i=1,...,p}
¢ tr(A) is the trace of A.
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*Mirror descent [?]

What happens if we use a Bregman distance d,; in gradient descent?

Let ¢ : RP — R be a p-strongly convex and continuously differentiable function and
let the associated Bregman distance be dy (x,y) = ¥(x) — ¢¥(y) — (x —y, Vi (y))-
Assume that the inverse mapping ¢* of 1 is easily computable (i.e., its convex
conjugate).

» Majorize: Find ay, such that
£06) < FOH) + (7). 3= ) + =y k) = Qo x0)
> Minimize
X = argmin Q% (x, %) = V() + —— (VUe+) = V() = 0
Vi (xF ) = Vi (x*) — ap V F(x)
X = vyt (Vi () — e V") (V)™ = Vy* ([T

> Mirror descent is a generalization of gradient descent for functions that are
Lipschitz-gradient in norms other than the Euclidean.

> MD allows to deal with some constraints via a proper choice of ).
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*Mirror descent example

How can we minimize a convex function over the unit simplex?

)131612 f(x),

where
» A:={x€ER? : Z;’:l xj = 1,x > 0} is the unit simplex;

> f is convex L ¢-Lipschitz continuous with respect to some norm || - ||.

Entropy function

> Define the entropy function

P
Pe(x) = E zjlnz; if x € A, oo otherwise.
=1
> 1) is 1-strongly convex over intA with respect to || - ||1.

> YX(z) =In Z;,):l €®i and ||[Vpe(x)|| = o0 as x — X € A.
> Let x0 = p~11, then dy(x,x°) < Inp for all x € A.
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*Entropic descent algorithm [?]

Entropic descent algorithm (EDA)

Let x° = p—11 and generate the following sequence

k,—tef](x")
el %e VD 1
5 - — 7 kY - )
' SoP_ ke i) Ly vk

where f/(x) = (f1(x)/,..., fp(x)))T € 8f(x), which is the subdifferential of f at x.
> This is an example of non-smooth and constrained optimization;

> The updates are multiplicative.
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*Convergence analysis of mirror descent

Problem

min f(x) (1)

xeX

where
» X is a closed convex subset of RP;

> f is convex L ¢-Lipschitz continuous with respect to some norm || - ||.

Theorem ([?])

Let {xk} be the sequence generated by mirror descent with x° € intX.
If the step-sizes are chosen as

2udy (x*,x0) 1

S

the following convergence rate holds

2d * x9) 1
min f(xF) — f* < L; 4 2050 1
0<s<k W Vk

> This convergence rate is optimal for solving (??) with a first-order method.
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