Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 4: Unconstrained, smooth minimization I
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2017)
erc

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- This lecture

1. Unconstrained convex optimization: the basics
2. Gradient descent methods

- Next lecture

1. Gradient and accelerated gradient descent methods

Recommended reading

- Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical Optimization, Springer, 2006.
- Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization, Cambridge university press, 2009.
- Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific, 1999.
- Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87, Springer, 2004.

Motivation

Motivation

This lecture covers the basics of numerical methods for unconstrained and smooth convex minimization.

Smooth unconstrained convex minimization

Problem (Mathematical formulation)

The unconstrained convex minimization problem is defined as:

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})
$$

- f is a proper, closed and smooth convex function, $-\infty<f^{\star}<+\infty$.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(f): f\left(\mathbf{x}^{\star}\right)=f^{\star}\right\}$ is nonempty.

Example: Maximum likelihood estimation and M-estimators

Problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ be unknown and b_{1}, \ldots, b_{n} be i.i.d. samples of a random variable B with p.d.f. $p_{\mathbf{x}^{\natural}}(b) \in \mathcal{P}:=\left\{p_{\mathbf{x}}(b): \mathbf{x} \in \mathbb{R}^{p}\right\}$.

Goal: estimate \mathbf{x}^{\natural} from b_{1}, \ldots, b_{n}.

Optimization formulation (ML estimator)

$$
\hat{\mathbf{x}}_{\mathrm{ML}}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{-\frac{1}{n} \sum_{i=1}^{n} \ln \left[p_{\mathbf{x}}\left(b_{i}\right)\right]\right\}=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})
$$

Theorem (Performance of the ML estimator [?, ?])
The random variable $\hat{\mathbf{x}}_{M L}$ satisfies

$$
\lim _{n \rightarrow \infty} \sqrt{n} \mathbf{J}^{-1 / 2}\left(\hat{\mathbf{x}}_{M L}-\mathbf{x}^{\natural}\right) \stackrel{d}{=} Z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

where

$$
\mathbf{J}:=-\left.\mathbb{E}\left[\nabla_{\mathbf{x}}^{2} \ln \left[p_{\mathbf{x}}(B)\right]\right]\right|_{\mathbf{x}=\mathbf{x}^{\natural}} .
$$

is the Fisher information matrix associated with one sample. Roughly speaking,

$$
\left\|\sqrt{n} \mathbf{J}^{-1 / 2}\left(\hat{\mathbf{x}}_{M L}-\mathbf{x}^{\natural}\right)\right\|_{2}^{2} \sim \operatorname{Tr}(\mathbf{I})=p \quad \Rightarrow \quad\left\|\hat{\mathbf{x}}_{M L}-\mathbf{x}^{\natural}\right\|_{2}^{2}=\mathcal{O}(p / n)
$$

Example: Maximum likelihood estimation and M-estimators

Problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ be unknown and b_{1}, \ldots, b_{n} be i.i.d. samples of a random variable B with p.d.f. $p_{\mathbf{x}^{\natural}}(b) \in \mathcal{P}:=\left\{p_{\mathbf{x}}(b): \mathbf{x} \in \mathbb{R}^{p}\right\}$. Goal: estimate \mathbf{x}^{\natural} from b_{1}, \ldots, b_{n}.

Optimization formulation (ML estimator)

$$
\hat{\mathbf{x}}_{\mathrm{ML}}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{-\frac{1}{n} \sum_{i=1}^{n} \ln \left[p_{\mathbf{x}}\left(b_{i}\right)\right]\right\}=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})
$$

Optimization formulation (M-estimator)

In general, we can replace the negative log-likelihoods by any appropriate, convex g_{i} 's

$$
\min _{x \in \mathcal{X}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} g_{i}\left(b_{i} ; \mathbf{x}\right)}_{f(\mathbf{x})}
$$

Approximate vs. exact optimality

Is it possible to solve a convex optimization problem?

> "In general, optimization problems are unsolvable" - Y. Nesterov [?]

- Even when a closed-form solution exists, numerical accuracy may still be an issue.
- We must be content with approximately optimal solutions.

Definition

We say that $\mathbf{x}_{\epsilon}^{\star}$ is ϵ-optimal in objective value if

$$
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon .
$$

Definition

We say that $\mathbf{x}_{\epsilon}^{\star}$ is ϵ-optimal in sequence if, for some norm $\|\cdot\|$,

$$
\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}^{\star}\right\| \leq \epsilon
$$

- The latter approximation guarantee is considered stronger.

A gradient method

Lemma (First-order necessary optimality condition)

Let \mathbf{x}^{\star} be a global minimum of a differentiable convex function f. Then, it holds that

$$
\nabla f\left(\mathbf{x}^{\star}\right)=\mathbf{0}
$$

Fixed-point characterization

Multiply by -1 and add \mathbf{x}^{\star} to both sides to obtain a fixed point condition,

$$
\mathbf{x}^{\star}=\mathbf{x}^{\star}-\alpha \nabla f\left(\mathbf{x}^{\star}\right) \quad \text { for all } 0 \neq \alpha \in \mathbb{R}
$$

Gradient method

Choose a starting point \mathbf{x}^{0} and iterate

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

where α_{k} is a step-size to be chosen so that \mathbf{x}^{k} converges to \mathbf{x}^{\star}.

When does the gradient method converge?

Lemma

Assume that

1. There exists $\mathbf{x}^{\star} \in \operatorname{dom}(f)$ such that $\nabla f\left(\mathbf{x}^{\star}\right)=0$.
2. The mapping $\psi(\mathbf{x})=\mathbf{x}-\alpha \nabla f(\mathbf{x})$ is contractive for some α : i.e., there exists $\gamma \in[0,1)$ such that

$$
\|\psi(\mathbf{x})-\psi(\mathbf{z})\| \leq \gamma\|\mathbf{x}-\mathbf{z}\| \quad \text { for all } \mathbf{x}, \mathbf{z} \in \operatorname{dom}(f)
$$

Then, for any starting point $\mathbf{x}^{0} \in \operatorname{dom}(f)$, the gradient method converges to \mathbf{x}^{\star}.

When does the gradient method converge?

Lemma

Assume that

1. There exists $\mathbf{x}^{\star} \in \operatorname{dom}(f)$ such that $\nabla f\left(\mathbf{x}^{\star}\right)=0$.
2. The mapping $\psi(\mathbf{x})=\mathbf{x}-\alpha \nabla f(\mathbf{x})$ is contractive for some α : i.e., there exists $\gamma \in[0,1)$ such that

$$
\|\psi(\mathbf{x})-\psi(\mathbf{z})\| \leq \gamma\|\mathbf{x}-\mathbf{z}\| \quad \text { for all } \mathbf{x}, \mathbf{z} \in \operatorname{dom}(f)
$$

Then, for any starting point $\mathbf{x}^{0} \in \operatorname{dom}(f)$, the gradient method converges to \mathbf{x}^{\star}.

Proof.

If we start the gradient method at $\mathbf{x}^{0} \in \operatorname{dom}(f)$, then we have

$$
\begin{array}{rlrl}
\left\|\mathbf{x}^{k+1}-\mathbf{x}^{\star}\right\| & =\left\|\mathbf{x}^{k}-\alpha \nabla f\left(\mathbf{x}^{k}\right)-\mathbf{x}^{\star}\right\| & \\
& =\left\|\psi\left(\mathbf{x}^{k}\right)-\psi\left(\mathbf{x}^{\star}\right)\right\| & & \left(\nabla f\left(\mathbf{x}^{\star}\right)=0\right) \\
& \leq \gamma\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\| & & (\text { contraction }) \\
& \leq \gamma^{k+1}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\| & \tag{contraction}
\end{array}
$$

We then have that the sequence $\left\{\mathbf{x}^{k}\right\}$ converges globally to \mathbf{x}^{\star} at a linear rate.

Short (but important) detour: convergence rates

Definition (Convergence of a sequence)
The sequence $\mathbf{u}^{1}, \mathbf{u}^{2}, \ldots, \mathbf{u}^{k}, \ldots$ converges to \mathbf{u}^{\star} (denoted $\lim _{k \rightarrow \infty} \mathbf{u}^{k}=\mathbf{u}^{\star}$), if

$$
\forall \varepsilon>0, \exists K \in \mathbb{N}: k \geq K \Rightarrow\left\|\mathbf{u}^{k}-\mathbf{u}^{\star}\right\| \leq \varepsilon
$$

Convergence rates: the "speed" at which a sequence converges

- sublinear: if there exists $c>0$ such that

$$
\left\|\mathbf{u}^{k}-\mathbf{u}^{\star}\right\|=O\left(k^{-c}\right)
$$

- linear: if there exists $\alpha \in(0,1)$ such that

$$
\left\|\mathbf{u}^{k}-\mathbf{u}^{\star}\right\|=O\left(\alpha^{k}\right)
$$

- Q-linear: if there exists a constant $r \in(0,1)$ such that

$$
\lim _{k \rightarrow \infty} \frac{\left\|\mathbf{u}^{k+1}-\mathbf{u}^{\star}\right\|}{\left\|\mathbf{u}^{k}-\mathbf{u}^{\star}\right\|}=r
$$

- superlinear: If $r=0$, we say that the sequence converges superlinearly.
- quadratic: if there exists a constant $\mu>0$ such that

$$
\lim _{k \rightarrow \infty} \frac{\left\|\mathbf{u}^{k+1}-\mathbf{u}^{\star}\right\|}{\left\|\mathbf{u}^{k}-\mathbf{u}^{\star}\right\|^{2}}=\mu
$$

Example: Convergence rates

Examples of sequences that all converge to $u^{\star}=0$:

- Sublinear: $u^{k}=1 / k$
- Linear: $u^{k}=0.5^{k}$
- Superlinear: $u^{k}=k^{-k}$
- Quadratic: $u^{k}=0.5^{2^{k}}$

Remark

For unconstrained convex minimization as in (1), we always have $f\left(\mathbf{x}^{k}\right)-f^{\star} \geq 0$. Hence, we do not need to use the absolute value when we show convergence results based on the objective value, such as $f\left(\mathbf{x}^{k}\right)-f^{\star} \leq O\left(1 / k^{2}\right)$, which is sublinear.

Contractive maps and convexity

Proposition (Contractivity implies convexity with structure)

Let $f \in \mathcal{C}^{2}$ and define $\psi(\mathbf{x})=\mathbf{x}-\alpha \nabla f(\mathbf{x})$, with $\alpha>0$.
If $\psi(\mathbf{x})$ is contractive, with a constant contraction factor $\gamma<1$, then $f \in \mathcal{F}_{L, \mu}^{2,1}$.

Proof.

Consider $\mathbf{y}=\mathbf{x}+t \Delta \mathbf{x}$. By the contractivity assumption it must hold that

$$
\|\psi(\mathbf{x}+t \Delta \mathbf{x})-\psi(\mathbf{x})\| \leq t \gamma\|\Delta \mathbf{x}\| \quad \forall t .
$$

We also have that

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{1}{t}\|\psi(\mathbf{x}+t \Delta \mathbf{x})-\psi(\mathbf{x})\| & =\lim _{t \rightarrow 0}\left\|\Delta \mathbf{x}-\frac{\alpha}{t}(\nabla f(\mathbf{x}+t \Delta \mathbf{x})-\nabla f(\mathbf{x}))\right\| \\
& =\left\|\left(\mathbf{I}-\alpha \nabla^{2} f(\mathbf{x})\right) \Delta \mathbf{x}\right\| \\
& \leq \gamma\|\Delta \mathbf{x}\| \quad \text { (by assumption) }
\end{aligned}
$$

The inequality implies (derivation on the board) that

$$
\mathbf{0} \prec \frac{1-\gamma}{\alpha} \mathbf{I} \preceq \nabla^{2} f(\mathbf{x}) \preceq \frac{1+\gamma}{\alpha} \mathbf{I},
$$

which can be reinterpreted as $f \in \mathcal{F}_{L, \mu}^{2,1}$ with $L=\frac{1+\gamma}{\alpha}$ and $\mu=\frac{1-\gamma}{\alpha}$ (next!).

Gradient descent methods

Definition

Gradient descent (GD) Starting from $\mathbf{x}^{0} \in \operatorname{dom}(f)$, update $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ as

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)=\mathbf{x}^{k}+\alpha_{k} \mathbf{p}^{k} .
$$

Notice that $\mathbf{p}^{k}:=-\nabla f\left(\mathbf{x}^{k}\right)$ is the steepest descent (anti-gradient) search direction.
Key question: how to choose α_{k} to have descent/contraction?

Gradient descent methods

Definition

Gradient descent (GD) Starting from $\mathbf{x}^{0} \in \operatorname{dom}(f)$, update $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ as

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)=\mathbf{x}^{k}+\alpha_{k} \mathbf{p}^{k} .
$$

Notice that $\mathbf{p}^{k}:=-\nabla f\left(\mathbf{x}^{k}\right)$ is the steepest descent (anti-gradient) search direction.
Key question: how to choose α_{k} to have descent/contraction?

We need structure!

We use \mathcal{F} to denote the class of smooth convex functions.
(The domain of each function will be apparent from the context.)

Next few slides: structural assumptions

L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient convex functions)

Let $f: \mathcal{Q} \rightarrow \mathbb{R}$ be differentiable and convex, i.e., $f \in \mathcal{F}^{1}(\mathcal{Q})$. Then, f has a Lipschitz gradient if there exists $L>0$ (the Lipschitz constant) s.t.

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|_{2} \leq L\|\mathbf{x}-\mathbf{y}\|_{2}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{Q}
$$

Proposition (L-Lipschitz gradient convex functions)

$f \in \mathcal{F}^{1}(\mathcal{Q})$ has L-Lipschitz gradient if and only if the following function is convex:

$$
h(\mathbf{x})=\frac{L}{2}\|\mathbf{x}\|_{2}^{2}-f(\mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{Q}
$$

Definition (Class of 2-nd order Lipschitz functions)

The class of twice continuously differentiable functions f on \mathcal{Q} with Lipschitz continuous Hessian is denoted as $\mathcal{F}_{L}^{2,2}(\mathcal{Q})$ (with $2 \rightarrow 2$ denoting the spectral norm)

$$
\left\|\nabla^{2} f(\mathbf{x})-\nabla^{2} f(\mathbf{y})\right\|_{2 \rightarrow 2} \leq L\|\mathbf{x}-\mathbf{y}\|_{2}, \quad \forall \mathbf{x}, \mathbf{y} \in Q
$$

- $\mathcal{F}_{L}^{l, m}$: functions that are l-times differentiable with m-th order Lipschitz property.

Example: Logistic regression

Problem (Logistic regression)

Given a sample vector $\mathbf{a}_{i} \in \mathbb{R}^{p}$ and a binary class label $b_{i} \in\{-1,+1\}(i=1, \ldots, n)$, we define the conditional probability of b_{i} given \mathbf{a}_{i} as:

$$
\mathbb{P}\left(b_{i} \mid \mathbf{a}_{i}, \mathbf{x}^{\natural}, \mu\right) \propto 1 /\left(1+e^{-b_{i}\left(\left\langle\mathbf{x}^{\natural}, \mathbf{a}_{i}\right\rangle+\mu\right)}\right),
$$

where $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ is some true weight vector, $\mu \in \mathbb{R}$ is called the intercept. How to estimate \mathbf{x}^{\natural} given the sample vectors, the binary labels, and μ ?

Optimization formulation

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-b_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}+\mu\right)\right)\right)}_{f(\mathbf{x})}
$$

Structural properties

Let $\mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]^{T}$ (design matrix), then $f \in \mathcal{F}_{L}^{2,1}$, with $L=\frac{1}{4}\left\|\mathbf{A}^{T} \mathbf{A}\right\|$

μ-strongly convex functions

Definition

A function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ is called μ-strongly convex on its domain if and only if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$ and $\alpha \in[0,1]$ we have:

$$
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y}) \leq \alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y})-\frac{\mu}{2} \alpha(1-\alpha)\|\mathbf{x}-\mathbf{y}\|_{2}^{2}
$$

The constant μ is called the convexity parameter of function f.

- The class of k-differentiable μ-strongly functions is denoted as $\mathcal{F}_{\mu}^{k}(\mathcal{Q})$.
- Strong convexity \Rightarrow strict convexity, BUT strict convexity \Rightarrow strong convexity

Figure: (Left) Convex (Right) Strongly convex

μ-strongly convex functions (Alternative)

Definition

A convex function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is said to be μ-strongly convex if

$$
h(\mathbf{x})=f(\mathbf{x})-\frac{\mu}{2}\|\mathbf{x}\|_{2}^{2}
$$

is convex, where μ is called the strong convexity parameter.

- The class of k-differentiable μ-strongly functions is denoted as $\mathcal{F}_{\mu}^{k}(\mathcal{Q})$.
- Non-smooth functions can be μ-strongly convex: e.g., $f(\mathbf{x})=\|\mathbf{x}\|_{1}+\frac{\mu}{2}\|\mathbf{x}\|_{2}^{2}$.

Example: Least-squares estimation

Problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and $\mathbf{A} \in \mathbb{R}^{n \times p}$ (full column rank). Goal: estimate \mathbf{x}^{\natural}, given \mathbf{A} and

$$
\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w},
$$

where \mathbf{w} denotes unknown noise.

Optimization formulation (Least-squares estimator)

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \underbrace{\frac{1}{2}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}}_{f(\mathbf{x})}
$$

Structural properties

- $\nabla f(\mathbf{x})=\mathbf{A}^{T}(\mathbf{A x}-\mathbf{b})$, and $\nabla^{2} f(\mathbf{x})=\mathbf{A}^{T} \mathbf{A}$.
- $\lambda_{p} \mathbf{I} \preceq \nabla^{2} f(\mathbf{x}) \preceq \lambda_{1} \mathbf{I}$, where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p}$ are the eigenvalues of $\mathbf{A}^{T} \mathbf{A}$.
- It follows that $L=\lambda_{1}$ and $\mu=\lambda_{p}$. If $\lambda_{p}>0$, then $f \in \mathcal{F}_{L, \mu}^{2,1}$, otherwise $f \in \mathcal{F}_{L}^{2,1}$.
- Since $\operatorname{rank}\left(\mathbf{A}^{T} \mathbf{A}\right) \leq \min \{n, p\}$, if $n<p$, then $\lambda_{p}=0$.

Self-concordant functions

Definition (Self-concordant functions in 1-dimension)
A convex function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if

$$
\left|\varphi^{\prime \prime \prime}(t)\right| \leq 2 \varphi^{\prime \prime}(t)^{3 / 2}, \quad \forall t \in \mathbb{R}
$$

Self-concordant functions

Definition (Self-concordant functions in 1-dimension)
A convex function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if

$$
\left|\varphi^{\prime \prime \prime}(t)\right| \leq 2 \varphi^{\prime \prime}(t)^{3 / 2}, \quad \forall t \in \mathbb{R}
$$

Affine Invariance of self-concordant functions

Let $\tilde{\varphi}(t)=\varphi(\alpha t+\beta)$ where $\alpha \neq 0$. Then, $\tilde{\varphi}$ is self-concordant iff φ is.

Self-concordant functions

Definition (Self-concordant functions in 1-dimension)

A convex function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if

$$
\left|\varphi^{\prime \prime \prime}(t)\right| \leq 2 \varphi^{\prime \prime}(t)^{3 / 2}, \quad \forall t \in \mathbb{R}
$$

Affine Invariance of self-concordant functions

Let $\tilde{\varphi}(t)=\varphi(\alpha t+\beta)$ where $\alpha \neq 0$. Then, $\tilde{\varphi}$ is self-concordant iff φ is.

Important remarks of self-concordance

1. Generalize to higher dimension: A convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be (standard) self-concordant if $\left|\varphi^{\prime \prime \prime}(t)\right| \leq 2 \varphi^{\prime \prime}(t)^{3 / 2}$, where $\varphi(t):=f(\mathbf{x}+t \mathbf{v})$ for all $t \in \mathbb{R}, \mathbf{x} \in \operatorname{dom} f$ and $\mathbf{v} \in \mathbb{R}^{n}$ such that $\mathbf{x}+t \mathbf{v} \in \operatorname{dom} f$.
2. Affine invariance still holds in high dimension.
3. Self-concordant functions are efficiently minimized by the Newton method and its variants (see Lecture 6).

Back to gradient descent methods

Gradient descent (GD) algorithm

Starting from $\mathbf{x}^{0} \in \operatorname{dom}(f)$, produce the sequence $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}, \ldots$ according to

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)=\mathbf{x}^{k}+\alpha_{k} \mathbf{p}^{k} .
$$

Notice that $\mathbf{p}^{k}:=-\nabla f\left(\mathbf{x}^{k}\right)$ is the steepest descent (anti-gradient) direction. Key question: how do we choose α_{k} to have descent/contraction?

Back to gradient descent methods

Gradient descent (GD) algorithm

Starting from $\mathbf{x}^{0} \in \operatorname{dom}(f)$, produce the sequence $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}, \ldots$ according to

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)=\mathbf{x}^{k}+\alpha_{k} \mathbf{p}^{k} .
$$

Notice that $\mathbf{p}^{k}:=-\nabla f\left(\mathbf{x}^{k}\right)$ is the steepest descent (anti-gradient) direction. Key question: how do we choose α_{k} to have descent/contraction?

Step-size selection

Case 1: If $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{p}\right)$, then:

- We can choose $0<\alpha_{k}<\frac{2}{L}$. The optimal choice is $\alpha_{k}:=\frac{1}{L}$.
- α_{k} can be determined by a line-search procedure:

1. Exact line search: $\alpha_{k}:=\underset{\alpha>0}{\arg \min } f\left(\mathbf{x}^{k}-\alpha \nabla f\left(\mathbf{x}^{k}\right)\right)$.
2. Back-tracking line search with Armijo-Goldstein's condition:

$$
f\left(\mathbf{x}^{k}-\alpha \nabla f\left(\mathbf{x}^{k}\right)\right) \leq f\left(\mathbf{x}^{k}\right)-c \alpha\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}, \quad c \in(0,1 / 2] .
$$

Case 2: If $f \in \mathcal{F}_{L, \mu}^{1,1}\left(\mathbb{R}^{p}\right)$, then:

- We can choose $0<\alpha_{k} \leq \frac{2}{L+\mu}$. The optimal choice is $\alpha_{k}:=\frac{2}{L+\mu}$.

Case 3: If $f \in \mathcal{F}_{2}(\mathcal{Q})$, then, a bit more complicated (more later).

Towards a geometric interpretation I

Recall:

- Let $f \in \mathcal{F}_{L}^{2}\left(\mathbb{R}^{p}\right)$ with gradient $\nabla f(\mathbf{x})$ and Hessian $\nabla^{2} f(\mathbf{x})$.
- First-order Taylor approximation of f at \mathbf{y} :

$$
f(\mathbf{x}) \geq f(\mathbf{y})+\langle\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle
$$

- Convex functions: $1^{\text {st }}$-order Taylor approximation is a global lower surrogate.

Towards a geometric interpretation II

Lemma

Let $f \in \mathcal{F}_{L}^{1,1}(\mathcal{Q})$. Then, we have:

$$
f(\mathbf{y})-f(\mathbf{x})-\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \leq \frac{L}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{Q}
$$

Proof.

By the Taylor's theorem:

$$
f(\mathbf{y})=f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\int_{0}^{1}\langle\nabla f(\mathbf{x}+\tau(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle d \tau
$$

Therefore,

$$
\begin{aligned}
f(\mathbf{y})-f(\mathbf{x})-\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle & \leq \int_{0}^{1}\|\nabla f(\mathbf{x}+\tau(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x})\|^{*} \cdot\|\mathbf{y}-\mathbf{x}\| d \tau \\
& \leq L\|\mathbf{y}-\mathbf{x}\|_{2}^{2} \int_{0}^{1} \tau d \tau=\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}
\end{aligned}
$$

Gradient descent methods: geometrical intuition

Gradient descent methods: geometrical intuition

$$
\begin{equation*}
f(\mathbf{x}) \geq f\left(\mathbf{x}^{k}\right)+\left\langle\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}-\mathbf{x}^{k}\right\rangle \tag{1}
\end{equation*}
$$

Gradient descent methods: geometrical intuition

Majorize:

Gradient descent methods: geometrical intuition

Majorize:

Gradient descent methods: geometrical intuition

Convergence rate of gradient descent

Theorem

$$
\begin{aligned}
& f \in \mathcal{F}_{L}^{2,1}, \quad \alpha=\frac{1}{L}: \\
& f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right) \leq \frac{2 L}{k+4}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}^{2} \\
& f \in \mathcal{F}_{L, \mu}^{2,1}, \quad \alpha=\frac{2}{L+\mu}: \\
& \left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|_{2} \leq\left(\frac{L-\mu}{L+\mu}\right)^{k}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2} \\
& f \in \mathcal{F}_{L, \mu}^{2,1}, \quad \alpha=\frac{1}{L}: \\
& \left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|_{2} \leq\left(\frac{L-\mu}{L+\mu}\right)^{\frac{k}{2}}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}
\end{aligned}
$$

Note that $\frac{L-\mu}{L+\mu}=\frac{\kappa-1}{\kappa+1}$, where $\kappa:=\frac{L}{\mu}$ is the condition number of $\nabla^{2} f$.

Convergence rate of gradient descent

Theorem

$$
\begin{aligned}
& f \in \mathcal{F}_{L}^{2,1}, \quad \alpha=\frac{1}{L}: \\
& f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right) \leq \frac{2 L}{k+4}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}^{2} \\
& f \in \mathcal{F}_{L, \mu}^{2,1}, \quad \alpha=\frac{2}{L+\mu}: \\
& \left\|\mathrm{x}^{k}-\mathrm{x}^{\star}\right\|_{2} \leq\left(\frac{L-\mu}{L+\mu}\right)^{k}\left\|\mathrm{x}^{0}-\mathbf{x}^{\star}\right\|_{2} \\
& f \in \mathcal{F}_{L, \mu}^{2,1}, \quad \alpha=\frac{1}{L}: \\
& \left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|_{2} \leq\left(\frac{L-\mu}{L+\mu}\right)^{\frac{k}{2}}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}
\end{aligned}
$$

Note that $\frac{L-\mu}{L+\mu}=\frac{\kappa-1}{\kappa+1}$, where $\kappa:=\frac{L}{\mu}$ is the condition number of $\nabla^{2} f$.

Remarks

- Assumption: Lipschitz gradient. Result: convergence rate in objective values.
- Assumption: Strong convexity. Result: convergence rate in sequence of the iterates and in objective values.
- Note that the suboptimal step-size choice $\alpha=\frac{1}{L}$ adapts to the strongly convex case (i.e., it features a linear rate vs. the standard sublinear rate).

Example: Ridge regression

Optimization formulation

- Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ given by $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where $\mathbf{w} \in \mathbb{R}^{n}$ is some noise.
- A classical estimator of \mathbf{x}^{\natural}, known as ridge regression, is

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x}):=\frac{1}{2}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\frac{\rho}{2}\|\mathbf{x}\|_{2}^{2}
$$

where $\rho \geq 0$ is a regularization parameter

Remarks

- $f \in \mathcal{F}_{L, \mu}^{2,1}$ with:
- $L=\lambda_{1}\left(\mathbf{A}^{T} \mathbf{A}\right)+\rho$;
- $\mu=\lambda_{p}\left(\mathbf{A}^{T} \mathbf{A}\right)+\rho ;$
- where $\lambda_{1} \geq \ldots \geq \lambda_{p}$ are the eigenvalues of $\mathbf{A}^{T} \mathbf{A}$.
- The ratio $\kappa=\frac{L}{\mu}$ decreases as ρ increases, leading to faster linear convergence.
- Note that if $n<p$ and $\rho=0$, we have $\mu=0$, hence $f \in \mathcal{F}_{L}^{2,1}$ and we can expect only $\mathcal{O}(1 / k)$ convergence from the gradient descent method.

Example: Ridge regression

Case 1:

$$
n=500, p=2000, \rho=0
$$

Example: Ridge regression

Case 1:

$$
n=500, p=2000, \rho=0
$$

Case 2:
$n=500, p=2000, \rho=0.01 \lambda_{p}\left(\mathbf{A}^{T} \mathbf{A}\right)$

*Adagrad: An adaptive step-size gradient method

Recall the gradient descent:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\eta \nabla f\left(\mathbf{x}^{k}\right),
$$

where $\eta>0$ is the step-size.

Two potential improvements

1. Instead of fixing an η for all k, we may consider η_{k}.
2. Instead of applying η to all coordinates of $\nabla f\left(\mathbf{x}^{k}\right)$, we may consider $\left[\eta_{i} \nabla f\left(\mathbf{x}^{k}\right)_{i}\right]_{i}$ (coordinate-wise step-size).

*Adagrad: An adaptive step-size gradient method

Recall the gradient descent:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\eta \nabla f\left(\mathbf{x}^{k}\right),
$$

where $\eta>0$ is the step-size.

Two potential improvements

1. Instead of fixing an η for all k, we may consider η_{k}.
2. Instead of applying η to all coordinates of $\nabla f\left(\mathbf{x}^{k}\right)$, we may consider $\left.{ }_{[} \eta_{i} \nabla f\left(\mathbf{x}^{k}\right)_{i}\right]_{i}$ (coordinate-wise step-size).

Example (Adaptive gradient methods)

Many algorithms build upon this idea, for instance

1. Adagrad [?].
2. Adam [?]
3. RMSprop [?].
4. Adadelta [?].

We present the simplest version of Adagrad below.

*Adagrad: An adaptive step-size gradient method

Definition (Adagrad)

Define

$$
G_{i}^{k}=\sum_{t=1}^{k}\left[\nabla f\left(\mathbf{x}^{t}\right)\right]_{i}^{2}
$$

The Adagrad iterate is defined by, for each coordinate i,

$$
\mathbf{x}_{i}^{k+1}=\mathbf{x}_{i}^{k}-\frac{\eta}{\sqrt{G_{i}^{k}}}\left[\nabla f\left(\mathbf{x}^{t}\right)\right]_{i} .
$$

Intuition:

1. G_{i}^{k} is increasing in k for all i, and hence the step-sizes for all coordinates are decreasing in k.
2. The step-size for each coordinate is different. Smaller accumulated gradient (G_{i}^{k}) indicates the requirement for a larger step-size for more progress.
3. Slower convergence rate $\left(O\left(\frac{1}{\sqrt{k}}\right)\right.$ [?]), but very effective in practice.

Example: Effect of η in Adagrad

Ridge regression ($n=500, p=2000, \rho=0$)

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x}):=\frac{1}{2}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\frac{\rho}{2}\|\mathbf{x}\|_{2}^{2}
$$

Example: Ridge regression

Case 1:

$$
n=500, p=2000, \rho=0
$$

Example: Ridge regression

Case 1:

$$
n=500, p=2000, \rho=0
$$

Case 2:
$n=500, p=2000, \rho=0.01 \lambda_{p}\left(\mathbf{A}^{T} \mathbf{A}\right)$

*From gradient descent to mirror descent

Gradient descent as a majorization-minimization scheme

- Majorize f at \mathbf{x}^{k} by using L-Lipschitz gradient continuity

$$
f(\mathbf{x}) \leq f\left(\mathbf{x}^{k}\right)+\left\langle\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}-\mathbf{x}^{k}\right\rangle+\frac{L}{2}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{2}^{2}:=Q\left(\mathbf{x}, \mathbf{x}^{k}\right)
$$

- Minimize $Q\left(\mathbf{x}, \mathbf{x}^{k}\right)$ to obtain the next iterate \mathbf{x}^{k+1}

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\underset{\mathbf{x}}{\arg \min } Q\left(\mathbf{x}, \mathbf{x}^{k}\right) \Rightarrow \nabla f\left(\mathbf{x}^{k}\right)+L\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)=0 \\
& \mathbf{x}^{k+1}=\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)
\end{aligned}
$$

Other majorizers

We can re-write the majorization step as

$$
f(\mathbf{x}) \leq f\left(\mathbf{x}^{k}\right)+\left\langle\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}-\mathbf{x}^{k}\right\rangle+\alpha d\left(\mathbf{x}, \mathbf{x}^{k}\right)
$$

where $d\left(\mathbf{x}, \mathbf{x}^{k}\right)=\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{2}^{2}$ is the Euclidean distance and $\alpha=L$.

- Can we use a different function $d\left(\mathbf{x}, \mathbf{x}^{k}\right)$ that is better suited to minimizing f ?

*Bregman divergences

Definition (Bregman divergence)

Let $\psi: \mathcal{S} \rightarrow \mathbb{R}$ be a continuously-differentiable and strictly convex function defined on a closed convex set \mathcal{S}. The Bregman divergence (d_{ψ}) associated with ψ for points \mathbf{x} and y is:

$$
d_{\psi}(\mathbf{x}, \mathbf{y})=\psi(\mathbf{x})-\psi(\mathbf{y})-\langle\nabla \psi(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle
$$

- $\psi(\cdot)$ is referred to as the Bregman or proximity function.
- The Bregman divergence satisfies the following properties:
(a) $d_{\psi}(\mathbf{x}, \mathbf{y}) \geq 0$ for all \mathbf{x} and \mathbf{y} with equality if and only if $\mathbf{x}=\mathbf{y}$
(b) Define $q(\mathbf{x}):=d_{\psi}(\mathbf{x}, \mathbf{y})$ for a fixed \mathbf{y}, then $\nabla q(\mathbf{x})=\nabla \psi(\mathbf{x})-\nabla \psi(\mathbf{y})$
(c) For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{S}, d_{\psi}(\mathbf{x}, \mathbf{y})=d_{\psi}(\mathbf{x}, \mathbf{z})+d_{\psi}(\mathbf{z}, \mathbf{y})+\langle(\mathbf{x}-\mathbf{z}), \nabla \psi(\mathbf{y})-\nabla \psi(\mathbf{z})\rangle$
(d) For all $\mathbf{x}, \mathbf{y} \in \mathcal{S}, d_{\psi}(\mathbf{x}, \mathbf{y})+d_{\psi}(\mathbf{y}, \mathbf{x})=\langle(\mathbf{x}-\mathbf{y}), \nabla \psi(\mathbf{x})-\nabla \psi(\mathbf{y})\rangle$
- The Bregman divergence becomes a Bregman distance when it is symmetric (i.e. $\left.d_{\psi}(\mathbf{x}, \mathbf{y})=d_{\psi}(\mathbf{y}, \mathbf{x})\right)$ and satisfies the triangle inequality.
- "All Bregman distances are Bregman divergences but the reverse is not true!"

*Bregman divergences

- The Bregman divergence is the vertical distance at \mathbf{x} between ψ and the tangent of ψ at \mathbf{y}, see figure below

- The Bregman divergence measures the strictness of convexity of $\psi(\cdot)$.

*Bregman divergences

Table: Bregman functions $\psi(\mathbf{x}) \&$ corresponding Bregman divergences/distances $d_{\psi}(\mathbf{x}, \mathbf{y})^{a}$.

Name (or Loss)	Domain b	$\psi(\mathbf{x})$	$d_{\psi}(\mathbf{x}, \mathbf{y})$				
Squared loss	\mathbb{R}	x^{2}	$(x-y)^{2}$				
Itakura-Saito divergence	$\mathbb{R}_{+}+$	$-\log x$	$\frac{x}{y}-\log \left(\frac{x}{y}\right)-1$				
Squared Euclidean distance	\mathbb{R}^{p}	$\\|\mathbf{x}\\|_{2}^{2}$	$\\|\mathbf{x}-\mathbf{y}\\|_{2}^{2}$				
Squared Mahalanobis distance	\mathbb{R}^{p}	$\langle\mathbf{x}, \mathbf{A x}\rangle$	$\langle(\mathbf{x}-\mathbf{y}), \mathbf{A}(\mathbf{x}-\mathbf{y})\rangle^{c}$				
Entropy distance	p-simplex d	$\sum_{i} x_{i} \log x_{i}$	$\sum_{i} \log \left(\frac{x_{i}}{y_{i}}\right)$				
Generalized I-divergence	\mathbb{R}_{+}^{p}	$\sum_{i} x_{i} \log x_{i}$	$\sum_{i}\left(\log \left(\frac{x_{i}}{y_{i}}\right)-\left(x_{i}-y_{i}\right)\right)$				
von Neumann divergence	$\mathbb{S}_{+}^{p \times p}$	$\mathbf{X} \log \mathbf{X}-\mathbf{X}$	$\operatorname{tr}(\mathbf{X}(\log \mathbf{X}-\log \mathbf{Y})-\mathbf{X}+\mathbf{Y})^{e}$				
logdet divergence	$\mathbb{S}_{+}^{p \times p}$	$-\log \operatorname{det} \mathbf{X}$	$\operatorname{tr}\left(\mathbf{X} \mathbf{Y}^{-1}\right)-\log \operatorname{det}\left(\mathbf{X} \mathbf{Y}^{-1}\right)-p$				

${ }^{a} x, y \in \mathbb{R}, \mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$ and $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{p \times p}$.
${ }^{b} \mathbb{R}_{+}$and \mathbb{R}_{++}denote non-negative and positive real numbers respectively.
c $\mathbf{A} \in \mathbb{S}_{+}^{p \times p}$, the set of symmetric positive semidefinite matrix.
${ }^{d} p$-simplex: $=\left\{\mathbf{x} \in \mathbb{R}^{p}: \sum_{i=1}^{p} x_{i}=1, x_{i} \geq 0, i=1, \ldots, p\right\}$
$e \operatorname{tr}(\mathbf{A})$ is the trace of \mathbf{A}.

*Mirror descent [?]

What happens if we use a Bregman distance d_{ψ} in gradient descent?

Let $\psi: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a μ-strongly convex and continuously differentiable function and let the associated Bregman distance be $d_{\psi}(\mathbf{x}, \mathbf{y})=\psi(\mathbf{x})-\psi(\mathbf{y})-\langle\mathbf{x}-\mathbf{y}, \nabla \psi(\mathbf{y})\rangle$. Assume that the inverse mapping ψ^{\star} of ψ is easily computable (i.e., its convex conjugate).

- Majorize: Find α_{k} such that

$$
f(\mathbf{x}) \leq f\left(\mathbf{x}^{k}\right)+\left\langle\nabla f\left(\mathbf{x}^{k}\right), \mathbf{x}-\mathbf{x}^{k}\right\rangle+\frac{1}{\alpha_{k}} d_{\psi}\left(\mathbf{x}, \mathbf{x}^{k}\right):=Q_{\psi}^{k}\left(\mathbf{x}, \mathbf{x}^{k}\right)
$$

- Minimize

$$
\begin{aligned}
\mathbf{x}^{k+1} & =\underset{\mathbf{x}}{\arg \min } Q_{\psi}^{k}\left(\mathbf{x}, \mathbf{x}^{k}\right) \Rightarrow \nabla f\left(\mathbf{x}^{k}\right)+\frac{1}{\alpha_{k}}\left(\nabla \psi\left(\mathbf{x}^{k+1}\right)-\nabla \psi\left(\mathbf{x}^{k}\right)\right)=0 \\
\nabla \psi\left(\mathbf{x}^{k+1}\right) & =\nabla \psi\left(\mathbf{x}^{k}\right)-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{x}^{k+1} & =\nabla \psi^{*}\left(\nabla \psi\left(\mathbf{x}^{k}\right)-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)\right) \quad(\nabla \psi(\cdot))^{-1}=\nabla \psi^{*}(\cdot)[\mathbf{?}] .
\end{aligned}
$$

- Mirror descent is a generalization of gradient descent for functions that are Lipschitz-gradient in norms other than the Euclidean.
- MD allows to deal with some constraints via a proper choice of ψ.

*Mirror descent example

How can we minimize a convex function over the unit simplex?

$$
\min _{\mathbf{x} \in \Delta} f(\mathbf{x}),
$$

where

- $\Delta:=\left\{\mathbf{x} \in \mathbb{R}^{p}: \sum_{j=1}^{p} x_{j}=1, \mathbf{x} \geq 0\right\}$ is the unit simplex;
- f is convex L_{f}-Lipschitz continuous with respect to some norm $\|\cdot\|$.

Entropy function

- Define the entropy function

$$
\psi_{e}(\mathbf{x})=\sum_{j=1}^{p} x_{j} \ln x_{j} \quad \text { if } \mathbf{x} \in \Delta, \quad+\infty \text { otherwise }
$$

- ψ_{e} is 1 -strongly convex over int Δ with respect to $\|\cdot\|_{1}$.
- $\psi_{e}^{\star}(\mathbf{z})=\ln \sum_{j=1}^{p} e^{z_{j}}$ and $\left\|\nabla \psi_{e}(\mathbf{x})\right\| \rightarrow \infty$ as $\mathbf{x} \rightarrow \tilde{\mathbf{x}} \in \Delta$.
- Let $\mathbf{x}^{0}=p^{-1} \mathbf{1}$, then $d_{\psi}\left(\mathbf{x}, \mathbf{x}^{0}\right) \leq \ln p$ for all $\mathbf{x} \in \Delta$.

*Entropic descent algorithm [?]

Entropic descent algorithm (EDA)

Let $\mathbf{x}^{0}=p^{-1} \mathbf{1}$ and generate the following sequence

$$
x_{j}^{k+1}=\frac{x_{j}^{k} e^{-t_{k} f_{j}^{\prime}\left(\mathbf{x}^{k}\right)}}{\sum_{j=1}^{p} x_{j}^{k} e^{-t_{k} f_{j}^{\prime}\left(\mathbf{x}^{k}\right)}}, \quad t_{k}=\frac{\sqrt{2 \ln p}}{L_{f}} \frac{1}{\sqrt{k}}
$$

where $f^{\prime}(\mathbf{x})=\left(f_{1}(\mathbf{x})^{\prime}, \ldots, f_{p}(\mathbf{x})^{\prime}\right)^{T} \in \partial f(\mathbf{x})$, which is the subdifferential of f at \mathbf{x}.

- This is an example of non-smooth and constrained optimization;
- The updates are multiplicative.

*Convergence analysis of mirror descent

Problem

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{1}
\end{equation*}
$$

where

- \mathcal{X} is a closed convex subset of \mathbb{R}^{p};
- f is convex L_{f}-Lipschitz continuous with respect to some norm $\|\cdot\|$.

Theorem ([?])

Let $\left\{\mathrm{x}^{k}\right\}$ be the sequence generated by mirror descent with $\mathrm{x}^{0} \in \operatorname{int} \mathcal{X}$. If the step-sizes are chosen as

$$
\alpha_{k}=\frac{\sqrt{2 \mu d_{\psi}\left(\mathbf{x}^{\star}, \mathbf{x}^{0}\right)}}{L_{f}} \frac{1}{\sqrt{k}}
$$

the following convergence rate holds

$$
\min _{0 \leq s \leq k} f\left(\mathbf{x}^{k}\right)-f^{\star} \leq L_{f} \sqrt{\frac{2 d_{\psi}\left(\mathbf{x}^{\star}, \mathbf{x}^{0}\right)}{\mu}} \frac{1}{\sqrt{k}}
$$

- This convergence rate is optimal for solving (??) with a first-order method.

References I

