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Outline

» This lecture

1. Gradient and accelerated gradient descent methods

> Next lecture

1. The quadratic case and conjugate gradient

2. Other optimization methods
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Recommended reading

» Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical
Optimization, Springer, 2006.

» Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization,
Cambridge university press, 2009.

> Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific,
1999.

> Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex
Optimization: A Basic Course, Vol. 87, Springer, 2004.
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Overview

Overview

This lecture covers the basics of numerical methods for unconstrained and smooth
convex minimization.

. V
ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 39 -ﬂ ﬂ.



Recall: convex, unconstrained, smooth minimization

Problem (Mathematical formulation)

F* := min {F(x) := f(x)} (1)
xXERP

where f is convex and twice differentiable.
Note that (1) is unconstrained.

How de we design efficient optimization algorithms with accuracy-computation
tradeoffs for this class of functions?
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Basic principles of descent methods

Template for iterative descent methods

1. Let x° € dom(f) be a starting point.
2. Generate a sequence of vectors x!,x2,--- € dom(f) so that we have descent:

FFY < f(xF), forallk=0,1,...
until xy is e-optimal.

Such a sequence {xk}k>0 can be generated as:

= 3k 4o, p

where pF is a descent direction and aj > 0 a step-size.

Remarks
> lterative algorithms can use various oracle information from the objective, such as
its value, gradient, or Hessian, in different ways to obtain o and pF
» These choices determine the overall convergence rate and complexity
> The type of oracle information used becomes a defining characteristic

-
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Basic principles of descent methods

A condition for local descent directions

The iterates are given as:

Xk+1

=x" + a;p"
By Taylor's theorem, we have
FEF) = f(xF) + ar(V(xF), p*) + O(aj IIpll3)-

For aj, small enough, the term ay,(V f(x*), p*) dominates O(a3) for a fixed pF.
Therefore, in order to have f(x**1) < f(x*), we require

(Vf(x"), p*) <0

3 |
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Basic principles of descent methods

Local steepest descent direction

Since
(VF(xF), p*) = IV FxP)[p* ] coso
where 0 is the angle between V f(x*) and p”, we have that
pF = —Vf(x")

is the local steepest descent direction.

2+ D(f,2")

level gete

Figure: Descent directions in 2D should be an element of the cone of descent directions D(f, -).

L]
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A reminder on notation

Important notation used throughout the whole lecture:

> Fi’m: Functions that are [-times differentiable with m-th order Lipschitz property
> In this lecture, m = 1, and | € {1,2,00}

> Fﬁ'ﬁ Subset of ]-']l:’m also satisfying p-strong convexity
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Gradient descent methods

Gradient descent (GD) algorithm

The gradient method we discussed before indeed use the local steepest direction:
p* = -Vf(xF)

so that
P = xF — 0, Vf(xF).

Key question: How do we choose a, so that we are guaranteed to successfully
descend? (ideally as fast as possible)

-
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Gradient descent methods

Gradient descent (GD) algorithm

The gradient method we discussed before indeed use the local steepest direction:
p* = -Vf(xF)

so that
P = xF — 0, Vf(xF).

Key question: How do we choose a, so that we are guaranteed to successfully
descend? (ideally as fast as possible)

Answer: By exploiting the structures within the convex function

When f € F;'', we can use o, = 1/L so that x*+1 = x¥ — L 1+ Vf(xF) is contractive.

> Note that the above GD method only uses the gradient information, and hence, it
is called a first-order method.

First-order methods employ only first-order oracle information about the objective,
namely the value of f and V f at specific points.
> Second-order methods also use the Hessian V2f.

Slide 11/ 39 -(I’Fl-
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Recall: Gradient descent methods - a geometrical intuition
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Recall: Gradient descent methods - a geometrical intuition

Structure in optimization: x* <k

(1) fx) > &)+ (VF(xF), x —xF)
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Recall: Gradient descent methods - a geometrical intuition

Majorize:
" N )
£ < FOE) + (V) x = %) + Fllx = x5 = Qu(x,x")
Minimize:
xF*1 = argmin Qp (x, x*)

= argngn _ <x"‘ B %vf(xk)ﬂr f(X)

Structure in optimization: x* k+‘1 Xk
(1) )= FF) + (VD) x = x) ;
2 fx) Sf(xk)+<Vf(xk)7x—xk>+5llx—xk||§
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Recall: Gradient descent methods - a geometrical intuition

Majorize:
I L'>L 2)
Fx) < FOR) 4 (VI(eE), 3 = x5) o+ -l = xF 1= Que (3, x5)

Minimize:

xF 1 = argmin Q. (x, x*) .
x f X

= arg min
x

-
=~ LVS) \q

slower

Structure in optimization: X ,—Tx
(1) F) 2 f(x) + (V") x - x") . xk+1
2 fx) Sf(xk)+<Vf(xk)7x—xk>+5llx—xk||§
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Recall: Gradient descent methods - a geometrical intuition

Majorize:
. o L )
F0) < FOM) + (V) x = xF) + = x¥[I3 = Qu(x,x¥)
Minimize:
xF*1 = argmin Qp (x, x*)

= arg m;in _ <xk B %Vf(ﬁ)) H2 f(x)
) X

Structure in optimization: * k

(0 7602 f6) 4 (VI x =)
(2) 00 < FOH) + (V) x = x) + Sl = x|
(8) SO0 = FE) + (V) —xb) + Bl — x5

| G
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Convergence rate of gradient descent

Theorem
Let the starting point for GD be x° € dom(f).
»Iffe ]-'i’l, with the choice o = %, the iterates of GD satisfy

I,
FxF) = f(x*) < mHXO - x*13

2,1 . . _ 2 5 -
» If f e F1 o With the choice o = T the iterates of GD satisfy

L — k
I =l < (F52) 1 =

» Iff e fi’h, with the choice oo = % the iterates of GD satisfy

k
L — 2
< ( “) %% — x*||2
L+ p

A

[l* — ]2
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Proof of convergence rates of gradient descent - part | (self-study)
> We first need to prove a basic result about functions in .7-%’1

Lemma
Let f € F}''. Then it holds that

TIV6) = VIWIP < (V700 = V)%~ ) @

Proof (Advanced material).
First, recall the following result about Lipschitz gradient functions h € fé’l
L
R(x) < B + (V) x =) + 2 lx = y3: ®
To prove the result, let ¢(y) := f(y) — (Vf(x),y), with Vo(y) = V f(y) — Vf(x). Clearly,

¢(y) attains its minimum value at y* = x. Hence, and by also applying (3) with h = ¢ and
x=y— £Vo(y), we get

1 1
600 <6 (v = V60 < 0l) = 5L ITOWIE
Substituting the above definitions into the left and right hand sides gives
1
1O +(V I,y = %) + 52 IV = VE)IIZ < £() @)

By adding two copies of (4) with each other, with x and y swapped, we obtain (2).

. O D
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Proof of convergence rates of gradient descent - part Il (self-study)

Theorem

If f e .7:2‘1, with the choice o = % the iterates of GD satisfy

2L
FOF) = f(x) < mHXO—X*H% (5)

Proof

> Consider the constant step-size iteration x*11 = x* — an(xk).
> Let ry := ||x® — x*||, where x* denotes a minimizer. Show m

rhpy = [T = xM )P = [xF - X - a v
= [|x" — x*? = 20V F(x") = VF(x"),x" —x*) + 7| V£ ()|

< —a2/L - )|V (by (2))

<7, Va<2/L.
Hence, the gradient iterations are contractive when o« < 2/L for all k& > 0.

> An auxiliary result: Let Ay := f(xk) — f*. Show | Ay < r()HVf(xk)H |

k k k k k k
Ap SAVFET), x" = x) < [VFE) X" = x| = re[VFE)I < ol Vf (x|
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Proof of convergence rates of gradient descent - part Il
(self-study)

Proof (continued)
> We can establish convergence along with the auxiliary result above:
L ;
PO < FOM) + (VIR x T =) 4 T -t

= F(x*) = wrIVFE®)?, wr = a(l — La/2).
Subtract f* from both sides and apply the last inequality of the previous slide to get
A1 < Ay — (wi/T0)A7 | Thus, dividing by Ajq Ay

AL 2 AT+ (Wr/T) A/ Apgr 2> AT+ (wi /7).

By induction, we have A;il > Agl + (wi/r2)(k +1). Then, taking (-)~* of both sides
(and hence replacing > by <) and substituting all of the definitions gives

2(f(x0) — f(x*))lIx0 — x*|I3
—x* |5 + ka(2 — aL)(f(xo0) — f*)’

k *
FO) = £6) < g

> In order to choose the optimal step-size, we maximize the function ¢(a) = a(2 — aL).

Hence, the optimal step size for the gradient method for f € ]-'i’l is given by a = %

> Finally, since f(xo0) < f* + V£(x*)T (x0 — x*) + (L/2)[lx0 — x*[I3 = £* + (L/2)r},
we obtain (5).

u]
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Proof of convergence rates of gradient descent - part IV
(self-study)

Theorem

> If fe fz’it, with the choice oo = %ﬂ, the iterates of GD satisfy

A

L= m\*
Ix* = x*[l2 —) 10 — x*]l2 (6)

- (L+u

~If f e fi’h, with the choice oo = % the iterates of GD satisfy

k
L— 2
||Xk _ x*||2 < (T—Hﬁ) ||X0 _ x*||2 (7)

Before proving the convergence rate, we first need a result about functions in ]-'i; It

is proved similarly to (2).

Theorem
If f e }'é’t, then for any x andy, we have

wL 1
(Vi) =Vfy),x—y) 2 MJFLIIX*.VW + mllvf(X) -VimIZ.  (@®)
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Proof of convergence rates of gradient descent - part V (self-study)

Proof of (6) and (7)

> Let 7, = ||x® — x*||. Then, using (8) and the fact that V f(z*) = 0, we have

Thi1 = Ilxpt1 — % — aVF()|?

=12 — 2a(Vf(x*), x* — x*) + a?|| V£ (x")|?

204;LL> 2 ( 2 ) ka2

<(1-— r, tala— —— | ||[Vf(x
<(1-27) 7 =) 1976l

> Since p < L, we haveaSMf_L in both thecasesa:%ora:w%. So the

last term in the previous inequality is negative, and hence
2apL\*
ri+1 < <1 _ ) 7'3
w+L

we obtain the rates as advertised.

> Plugging a = % and a = M%’

> For f € ]:ih the optimal step-size is given by a = (i-e., it optimizes the

2
)
worst case bound).

3 |
[Nl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 39 (L]



Convergence rate of gradient descent

Convergence rate of gradient descent

1 2L
2,1 _ k 0 2
JeFM, =z £O) = 1) < 2 = B
2 L—p
G]:2’1, o= — xk — x* <(7) x0 — x*
JEF a= I =l < (52) 1 =
k
1 b 2
2,1 _ k K 0
feFY, a=7 I =l < (F52) 7 e = 'l
Remarks

> Assumption: Lipschitz gradient. Result: convergence rate in objective values.

> Assumption: Strong convexity. Result: convergence rate in sequence of the

iterates and in objective values.

> Note that the suboptimal step-size choice a = % adapts to the strongly convex

case (i.e., it features a linear rate vs. the standard sublinear rate).

L]
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Example: Ridge regression

Optimization formulation

> Let A € R"%P and b € R™ given by the model b = AxP + w, where w € R" is
some noise.
> We can try to estimate x4 by solving the Tikhonov regularized least squares

. 1 2, P2
m =—|b—A + = .
min £) i= 5 [Ib = Ax|3 + £ 3

where p > 0 is a regularization parameter.

Remarks
2.1 .
> feFp, with:
> L=2X,(ATA) +p;

> w=A(ATA) +p;
> where A1 (ATA) < ... < A\, (ATA) are the eigenvalues of AT A.

> The ratio % decreases as p increases, leading to faster linear convergence.
> Note that if n < p and p = 0, we have = 0, hence f € ]‘—2’1 and we can expect

only O(1/k) convergence from the gradient descent method.

L]
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Example: Ridge regression
Case 1: Case 2:
n = 500, p = 2000,p = 0 n = 500,p = 2000, p = 0.01),(ATA)

10
ical bound 10° = = =Theoretical bound of GD
Theoretical bound of GD-uL
3D
10’ LT @B,
10}
10°
10°
0 1000 2 0( 4000 5000 0 250 500 750 1000 1250
Number of iterations Number of iterations
10°
+ap 1 T
[+ GD] o P
10°
10°
2 4 6 8 10 12 0 05 1 15 2 25 3
Time (s) Time (s)

|
PEaIl  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 39 (L]




Information theoretic lower bounds [3]

What is the best achievable rate for a first-order method (one using gradient
information but not higher-order quantities)?

fe .7-"20"1: Smooth and Lipschitz-gradient

It is possible to construct a function in .7-'20’1, for which any first order method must
satisfy

f(xk)—f(X*)Z32 3L %0 — x*||2 forall k< (p—1)/2

(k+1)2

fe fzjf: Smooth and strongly convex

It is possible to construct a function in ]-'zo;tl, for which any first order method must

satisfy
' V- vi\"
ka —x*|]2 > (m) ||x0 —x"||2

Gradient descent is O(1/k) for ;> and it is slower for ]-"fi’},
hence it does not achieve the lower bounds!

3 |
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Accelerated gradient descent algorithm

Problem

Is it possible to design optimal first-order methods with convergence rates matching
the theoretical lower bounds?
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Accelerated gradient descent algorithm

Problem

Is it possible to design optimal first-order methods with convergence rates matching
the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible
increase in the computational cost.
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Accelerated gradient descent algorithm

Problem

Is it possible to design optimal first-order methods with convergence rates matching
the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible
increase in the computational cost.

Accelerated Gradient algorithm for

1,1
F" (AG-L)
1. Set x7 = yV € dom(f) and to := 1.
2. For k=0,1,..., iterate

xEH = yh — V(M)

the1 = (14 /42 +1)/2

trp—1
yhtl = xk+l g (fk )(xk+1 _xk
‘k+1

. )
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Accelerated gradient descent algorithm

Problem

Is it possible to design optimal first-order methods with convergence rates matching

the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible

increase in the computational cost.

Accelerated Gradient algorithm for

Accelerated Gradient algorithm for

lions@epfl

1,1 1,1
Fh (AG-L) Fpl, (AG-pL)
1.Setx"=yY ¢ do.m(f) and tg := 1. 1. Choose x° = y° € dom(¥)
2.Fork=0,1,..., iterate 2. Fork=0,1,..., iterate
xEH = yh — V(M) )
ther = (1+ /482 +1)/2 xz“ = y: - fo(Z'“) .
yk.+1 — xk+1 + (t—1) (XkJrl _xk y +1 = xk+1 +'Y(X +1 _x )
bt where v = YE= Vi
T Vs
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Accelerated gradient descent algorithm

Problem

Is it possible to design optimal first-order methods with convergence rates matching

the theoretical lower bounds?

Solution [Nesterov's accelerated scheme]

Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible

increase in the computational cost.

Accelerated Gradient algorithm for

Accelerated Gradient algorithm for

1,1 1,1
Fil (AG-L) Fpt (AG-pL)
LSetx"=y"¢ do.m(f) and to := 1. 1. Choose x° = y° € dom(f)
2. For k=0,1,..., iterate 2. Fork=0,1,..., iterate
xFHL =y — %Vf(yk) k k1 k
1
e = (L4 /4 +1)/2 A AL I
yhtl = xk+l g (tk—l)(karl _xk yRrE = xR - xF)
bt where v = YE= Vi
VT Vit e

NOTE: AG is not monotone, but the cost-per-iteration is essentially the same as GD.
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Global convergence of AGD [3]

Theorem (f is convex with Lipschitz gradient)
If f e .7-';’1 or ]-'i’h, the sequence {xk}kzo generated by AGD-L satisfies

4L

m”xo —x*||3, Vk > 0. (9)

FF) = f* <
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Global convergence of AGD [3]

Theorem (f is convex with Lipschitz gradient)
If f e .7-'}"1 or Fi’h, the sequence {xk}kzo generated by AGD-L satisfies

4L

m”xo —x*||3, Vk > 0. (9)

fF) =<
AGD-L is optimal for F'! but NOT for Fy'\, !

Theorem (f is strongly convex with Lipschitz gradient)
If f e .Fi’i, the sequence {xk}kzo generated by AGD-ulL satisfies

k
f&xFy = f* gL(l— \/%) 1% — x*|13, Vk >0 (10)

k
2L 2
b = x*ll2 < 4/ = (1= y/5) 7 Ix° = x*|l2, V& > 0. (11)
i L

> AGD-L's iterates are not guaranteed to converge.
> AGD-L does not have a linear convergence rate for .Fi’h.
» AGD-ulL does, but needs to know p.

AGD achieves the iteration lowerbound within a constant!

3 |
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Example: Ridge regression

Case 1:
n = 500,p = 2000, p =0

10 T
= -Theorctical bound
+ GD
. AGD
10

0 1000 2000 3000 4000 5000
Number of iterations

. 258

5N

.
5

.
o

x) — f* in log-scale

) 2 4 6 8 10 12 14
Time (s)

Case 2:
= 500, p = 2000, p = 0.01\, (AT A)

10
= = =Theoretical bound AGD
—— Theoretical bound AGD-uL

£

&

£

&

]

%107

=

16

400 600 800  10( 1200 1400
Number of iterations

2
Time (s)
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Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.
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Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?
We can use a line-search procedure for both GD and AGD when
> L is known but it is expensive to evaluate;

> The global constant L usually does not capture the local behavior of f or it is
unknown;

e
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Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?

We can use a line-search procedure for both GD and AGD when
> L is known but it is expensive to evaluate;

> The global constant L usually does not capture the local behavior of f or it is
unknown;

Line-search

At each iteration, we try to find a constant Lj that satisfies:
Ly
FOHE) < Qr, (M yF) o= FrF) + (VA M —yF)  SE I -y

1 0
Here: Lo > 0 is given (e.g., Lo := cw) for ¢ € (0,1].

[ESE=HP

3 |
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How can we better adapt to the local geometry?

f(x)

Global quadratic upper bound
Qux,x")

< o x40 = arginin { 1)+ (95 x) + Ll - 3

IVF(@) = Vil < Llly — | zzT

F0) < FO) 4 VAT x—x8) 2 e x¥ 2
L is a global worst-case constant

3 |
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How can we better adapt to the local geometry?

f(x)

Local quadratic upper bound

Qr(x,x")

758 o x' ! = arg mxin {f(x") + (V") x —x*) + %Hx — kaé}

IV/() = Viw)l < Ly -2 160/ 07+ 916503 18

L is a global worst-case constant (\} . applies only locally
(x)

3 |
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Enhancements

Why do we need a restart strategy?

AG-p L requires knowledge of 1 and AG-L does not have optimal convergence for
strongly convex f.

AG is non-monotonic (i.e., f(x**+1) < f(x*) is not always satisfied).

AG has a periodic behavior, where the momentum depends on the local condition
number Kk = L/ p.

A restart strategy tries to reset this momentum whenever we observe high
periodic behavior. We often use function values but other strategies are possible.

Restart strategies

1.

lions@epfl

O’Donoghue - Candes’s strategy [4]: There are at least three options: Restart
with fixed number of iterations, restart based on objective values, and restart
based on a gradient condition.

. Giselsson-Boyd's strategy [2]: Do not require ¢, = 1 and do not necessary

require function evaluations.

. Fercoq-Qu’s strategy [1]: Unconditional periodic restart for strongly convex

functions. Do not require the strong convexity parameter.

D/
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Oscillatory behavior of AGD

> Minimize a quadratic function f(x) = xT®x, with p = 200 and
k(®) = L/p = 2.4 x 10*
> Use stepsize a = 1/L and update x**1 4~ 11 (x*+1 — x*) where
» Yet1 = Ok (1 — 0k)/ (6% + Or41)
> 0k+1 solves 92+1 = (1 — 9k+1)9i =+ q9k+1.
» The parameter ¢ should be equal to the reciprocal of condition number ¢* = /L.
> A different choice of ¢ might lead to oscillatory behavior.

JCORY A

q=q"/10
q=q"/3

q=q

w0l q=3q" ! ]
¢ =10q* |
g=1

107° L

L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
X
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: Ridge regression

Example

Case 2
n = 500, p = 2000, p = 0.01)\p

Case 1

(ATA)

,p:2000,p:0

n = 500
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HxDHOH g, X DB
2
5% —
g5 =
= o
= E
H =
25 E
E
m Z
s
B
— - °
E b ] E] ' ] ]
aeos-soy w Lf — (x)/ opas-sol wr [ — (x)f
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The (special) quadratic case — Step-size

Consider the minimization of a quadratic function

. 1
min f(x) := 5<x7 Ax) — (b, x)

x

where A is a p X p symmetric positive definite matrix, i.e., A = AT > 0.

Gradient Descent

ar =1/L with L =|A]||

Steepest descent

IV £G9)I1?
(Vf(xF), AVF(xF))

aE =

Barzilai-Borwein

IV G2
(VA1) AVf(xF1))

ap =
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The (special) quadratic case — convergence rates

For f(x) = %(x, Ax) — (b,x), we have L = ||A|| = X\p and p = A1, where
0 <A1 < Ag <---Ap are the eigenvalues of A.

Theorem (Gradient Descent)

k
A1

l[xF — x*|]2 < (1 - /\) [[x° — x*||2
'y

Theorem (Steepest Descent)

k
Ap — A
|ﬁ“—fMS(;+;>nﬂ—fm
D 1

Theorem (Barzilai-Borwein)
Under the condition \p < 21

Ap — A \F
I = xle < (22 ) o =

. V
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Example: Quadratic function

Case 1: n = p =100,x(A) =10 Case 1: n = p =100, x(A) = 100

radient descent
Steepest descent
Bar
mn 100 GD with Line-search
107 107
“ “
a0 Lot
k) x
— —
10° 10°
10" 10°
[ 10 20 30 40 0 60 70 80 920 100 0 100 200 300 400 500 600 700 800 900 1000
Number of iterations Number of iterations
i i L (L
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