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Outline

> This class

1. Stochastic programming
2. Stochastic gradient descent
3. Variance reduction technique

> SVRG
> SAGA

> Next class

1. Composite convex minimization
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Recommended reading materials

1. V. Cevher; S. Becker, and M. Schmidt. Convex optimization for big data. IEEE
Signal Process. Mag., vol. 31, pp. 32-43, 2014.

2. A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic
approximation approach to stochastic programming.

3. L. Bottou., F. E. Curtis and J. Nocedal. Optimization methods for large-scale
machine learning. arXiv:1606.04838, 2016 Jun 15.
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Recall: Gradient descent

Problem (Unconstrained convex problem)

Consider the following convex minimization problem:

f* = min f(x)
xXERP
> f(x) is proper, closed, and convex (perhaps strongly-convex and/or smooth).

Gradient descent

Choose a starting point x° and iterate
1
X = xF — 3V (x)

where 7}, is a step-size to be chosen so that x* converges to x*.

GD (accelerated GD) has fast (optimal) convergence rate when f € Fy,.
Why should we study anything else?

-
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Statistical learning

A basic statistical learning model [1]
A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables (a;,b;) € A X B, j =1,...,n, following an
unknown probability distribution P.

2. A class (set) F of functions f : A — B.
3. A loss function L : B x B — R.
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Statistical learning

A basic statistical learning model [1]
A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables (a;,b;) € A X B, j =1,...,n, following an
unknown probability distribution P.

2. A class (set) F of functions f : A — B.
3. A loss function L : B x B — R.

Definition (Risk)

Let (a,b) follow the probability distribution P and be independent of {(a;,b;)}
Then, the risk corresponding to any f € F is its expected loss:

R(f) = ]E(a,b) [L(f(a)1 b)} o

n
i=1"

Statistical learning seeks to find a f* € F that minimizes the risk, i.e., it solves

f* € arg min R(f).
fer

Many problems in machine learning cast into this formulation
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Empirical risk minimization (ERM) |

e By the law of large numbers, we can expect that for any fixed f € F,
1 n
R(f):=E|[L D))~ — L i), bj
(9 :=BIL(f(@).0)] = = Y L(f(aj).b))
j=1

when n is large enough, with high probability.

Statistical learning with Empirical risk minimization (ERM) [1]

We approximate f* by minimizing the empirical average of the loss instead of the risk.

fer

1 n
argmin { Ry (f) := o E L(f(a;),b;)
=il

Example: Least squares

Recall that the LS estimator is given by

n
1 1
arg min {— b — Ax||§} = argmin { — E (bj — (aj,x))? 5,
xerp 21 xerp | 2n £~

j=

where we define b := (b, ...,b,)T and aJT to be the j-th row of A.
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Empirical risk minimization (ERM) 11

Example: Logistic regression

Recall the logistic regression formulation
argmln Zlog <1+e J(<x’aj>+“)> :x€eERP peR
where b := (by,...,b,)T € {-1,1}".

Gradient descent for ERM

k1 _ gk _ Iy S
P = 1 TR = " =l D VL ) by)

Computational cost per iteration is proportional to sample size n,which is expensive
when n is large.
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Statistical learning with streaming data

Recall that statistical learning seeks to find a f* € F that minimizes the expected risk,

e arfgergm {R =E(au [L ]}

In practice, data can arrive in a streaming way.

Example: Markowitz portfolio optimization
= min {E[lo— (x,0:)1] }

> p € R is the desired return.

» X is intersection of the standard simplex and the constraint: (x,E[6:]) > p

Gradient method

= f% — e VR(f) = ¥ — vkEan [VL(fF(a),b)].

This can not be implemented in practice as the distribution of (a,b) is unknown.
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Stochastic programming

Problem (Mathematical formulation)

Consider the following convex minimization problem:

= min {f xa)}}

XERP

> 0 is a random vector whose probability distribution is supported on set ©.
> f(x) := E[h(x,0)] is proper, closed, and convex.
> The solution set 8* := {x* € dom(f) : f(x*) = f*} is nonempty.
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Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x° € R? and (yi)ken € 0, +oof".
2. For k=0,1,... perform:

xFHl = xF — 'ykG’(xk’, 0k).

e G(x*,0}) is an unbiased estimate of the full gradient:

E[G(x*,0,)] = V£ (xF).
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Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x° € R? and (yi)ken € 0, +oof".

2. For k=0,1,... perform:

xFHl = xF — 'ykG’(xk’, 0k).

e G(x*,0}) is an unbiased estimate of the full gradient:

E[G(x*,0,)] = V£ (xF).

Remark
e The cost of computing G(x*, 0;) is n times cheaper than that of V f(x*).

e As G(x*,0;,) is an unbiased estimate of the full gradient, SG would perform well.
o We assume {0} are jointly independent.

e SG is not a monotonic descent method.
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Example: Convex optimization with finite sums

Convex optimization with finite sums

The problem

xERP

n
. 1
arg min { f(x) := - ij(x) ,
j=1
can be rewritten as

arg min { f(x) := E;[fi(x)]}, i is uniformly distributed over {1,2,--- ,n}.
XERP

Stochastic gradient descent (SGD)

xFTl = xkF — 4, Vi (xF) i is uniformly distributed over{1,...,n}

o Note: E;[Vfi(xF)] = Z?zl ij(xk)/n = Vf(x).

e The computational cost of SGD per iteration is p.
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Synthetic least-squares problem
min {f(x) = i||Ax —b|Z:x¢c RP}
x 2n

Setup

> A := randn(n, p) - standard Gaussian N (0,I), with n = 104, p = 102.
> xU is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to ||x||2 = 1.

» b := Ax! + w, where w is Gaussian white noise with variance 1.

o '
| N — - Gradient descent E
1 Stochastic gradient
o
! A S,
! 1
|
102 1
| [ —
| S 10 |
o I = 1
0 ! . .
* . . 1
oo "
. | 1
o ! !
) |
i, 102F Vel
0 '
|
10° 10 1
05 1 s 2 25 s a5 o o5 1 15+ 25 8 s 4
apoch apoch

e 1 epoch = 1 pass over the full gradient
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Convergence of SGD for strongly convex problems |

Theorem (strongly convex objective, fixed step-size [11])
Assume
> f is u-strongly convex and L-smooth,
> E[||G(x*,0k)||12]2 < 02 + M||V f(xF)||3 (Bounded variance),
> W=7 < ToF-
Then

0.2
Bl (x*) — f(x)] < 22

+ (=)t (£ = £)

e Converge fast (linearly) to a neighborhood around x*
® Zero variance (o = 0) = linear convergence

e Smaller step-sizes v = converge to a better point, but with a slower rate
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Randomized Kaczmarz algorithm

Problem
Given a full-column-rank matrix A € R™”*? and b € R™, solve the linear system

Ax = b.

Notations: b := (b1,...,b,)T and aJT is the j-th row of A.

Randomized Kaczmarz algorithm (RKA)

1. Choose x° € RP .

2. For k=0,1,... perform:
2a. Pick ji € {1,--- ,n} randomly with Pr(j, = 14) = [|as||2/]|Al|%
2b. xF L = xF — ((a,,xF) —b;, ) a;, /llay, 13-

Linear convergence [15]
Let x* be the solution of Ax = b and x = ||A||z||A~1|. Then

Ellx* — x*|3 < (1 - 72" |x° — x*|3

e RKA can be seen as a particular case of SGD [16].
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Convergence of SGD for strongly convex problems Il

Theorem (strongly convex objective, decaying step-size [11])
Assume

> f is p-strongly convex and L-smooth,

> B[||G(x*,0k)||12]2 < 02 + M||Vf(x¥)||3 (bounded variance),

> e = Wc-‘—k with some appropriate constants c and k.

Then

E[lx* —x*|*] € ——,
k+1

where C' is a constant independent of k.

e Using the smooth property,

o

E[f(x*) — f(x*)] < LE[|x" — x*||*] < PR

o The rate is optimal if 02 > 0 with the assumption of strongly-convexity.
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Example: SGD with different step sizes

10°
% 107
]
02
=10
10° 10°
107 10*
2 4 6 8 10 2 4 6
epoch epoch

Setup

e Synthetic least-squares problem as before

o v =v0/(k + ko).
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Example: SGD with different step sizes

10
— %= 1/(3p),

100 —— 7 = 1(2p)
. R 70:1/;‘
f AN —7=2/n
I 107
i3

102

10° 10

102 107 10° 10" 102 107 10° 10"

epoch epoch

Setup
e Synthetic least-squares problem as before

* 7 =70/ (k + ko).

Yo = 1/u is the best choice.
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Comparison with GD

7= min { 1) = iéfj(x)}.

e f: p-strongly convex with L-Lipschitz smooth.

rate | iteration complexity | cost per iteration total cost
GD oF log(1/€) n nlog(1/e)
SGD | 1/k 1/e 1 1/e
e SGD is more favorable when n is large — large-scale optimization problems

. V
ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 41 -ﬂ ﬂ.



Convergence of SGD without strong convexity

Theorem (decaying step-size [7])
Assume
> E[||x* — x*||2] < D? for all k,
> E[||G(x*,0;)|1?] < M?, (bounded gradient)
> v =10/ Vk
Then
2+ logk

ky x* 22 2
BIf(x") = F(x")] < (70 +70M) 7

e O(1//k) rate is optimal for SG if we do not consider the strong convexity.
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Motivation for SGD with Averaging

e SGD iterates tend to oscillate around global minimizers
e Averaging iterates can reduce the oscillation effect
e Two types of averaging:

k

1 )

%k = z E v;%?  (vanilla averaging)
i=1

k .

-xJ

—k Z]’:l ViX
X

= ———— (weighted averaing)

k
Zj:1 Vi
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Convergence for SG-A |: strongly convex case

Stochastic gradient method with averaging (SG-A)

1. Choose x° € R? and (vi)ren € 0, +oo[™.
2a. For k=0,1,... perform:

xFHl = xk — ’ykG’(xkﬁk).
kE_ 1 k j
2b. X% = ¢ § ji]xj.

Theorem (Convergence of SG-A [8])

Assume

> f is u-strongly convex,

> E[|G(x,0,)|1%] < M2,

> Yk = Y0/k for some yo > 1/p.
Then

<k * 70M2(1+10gk)
L) — foc)) < 20Tl

e Same convergence rate with vanilla SGD.
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Convergence for SG-A |l: non-strongly convex case

Stochastic gradient method with averaging (SG-A)

1. Choose x° € R” and (vx)ren € 10, +oof.
2a. For k=0,1,... perform:

xFHl = xk — 'YkG’(xk Ok)-

2b. 7]&7(2:] (1'7) lz

0 V%

Theorem (Convergence of SG-A [2])

Let D = ||x° — x*|| and E[||G(x*, 0;)||%] < M?2.
Then,

2 2
D=+ M Z] 0%

22;’:0 Vi

In addition, choosing v, = D/(M 'k + 1), we get,

E[f(x*T!) — f(x*)] <

2F) _ F(x* MD(2 + log k)
E[f(x") — f( )]Siﬁ :

e Same convergence rate with vanilla SGD.
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Example: SG-A method with different step sizes

1
min{f(x) = —||Ax—b|3:x € RP}
X 2n

o= 1)
2)

2

Setup

e Synthetic least-squares problem as before

o v =0/ (k + ko).

-
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Example: SG-A method with different step sizes

1
min{f(x) = —||Ax—b|3:x € RP}
X 2n

= 17(3)
12|

2

fix)

F=4)

Setup

e Synthetic least-squares problem as before
® v =0/ (k + ko).

SG-A is more stable than SG.
Yo = 2/u is the best choice.

-

ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 41



Least mean squares algorithm

Least-square regression problem

Solve

x* € argmin {f(x) = l]E(ayb)(<a,x> - b)2} ,
xERP 2

given i.i.d. samples {(a;,b;)}7_; (particularly in a streaming way).

Stochastic gradient method with averaging

1. Choose x° € R? and v > 0.
2a. For k=1,...,n perform:

xF=xF1_ 4 ((ahxk*l) — bk) ay.

ok — _1 k j
2b. X% = k+1 Zj:ox :

O(1/n) convergence rate, without strongly convexity [17]
Let ||aj|l2 < R and |(a;,x*) — bj| < o a.s.. Pick v = 1/(4R2). Then

BfE) - fr< 2
n

(o v/B+ RIx® —x*[2)".

-
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Popular SGD Variants

o Mini-batch SGD: For each iteration,

1
R4+l _ kL T
X =x" =y E G(x",6).
oer

> g step-size

> b : mini-batch size

» " : a set of random variables 0 of size b

e Accelerated SGD (Nesterov accelerated technique)
e SGD with Momentum

o AdaGrad, AdaDelta, AdaM ...

3 |
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Adaptive stochastic gradient methods (Adagrad)

AdaGrad (diagonal form) [10]

1. Choose x% € RP and 4.
2. For k=0,1,... perform:

Hy, = 61 + diag (Zle G(xt,0;)G(xt, 9Z~)T)

xk+l = xk —q/H,:l/QG(xk,Gk).

e The step-size for each coordinate is different.

e The algorithm is a stochastic version of the adaptive GD from Lecture 4.

. |
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Example: AdaGrad vs SG

1
min{f(x) = —||Ax—b|3:x € Rp}
X 2n

SGD
AdaGrad

x|
f

[Ix*
%

i s e s
epoch epoch

Setup

e Synthesis leas-squares problem as before

o v, = 1/(u(k + ko)) for SG.

e § = 1072 for AdaGrad.

'(I’(l.
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Important remark!

All the results we have shown so far can be generalized for the non-smooth objectives,
simply by replacing the gradient with a subgradient.

We will talk about the subgradient methods in the next lecture.

3 |
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Convex optimization with finite sums

Problem (Convex optimization with finite sums)

We consider the following simple example in the next few slides:

£ = min {69 = ; 1,60}

> f; is proper, closed, and convex.
> Vfj is L;-Lipschitz continuous for j = 1,...,n.
> The solution set S* := {x* € dom(f) : f(x*) = f*} is nonempty.

e One prevalent choice is given by

G(xk,ik) = Vfi, (xk), ik is uniformly distributed over {1,2,--- ,n}

. )|
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An observation of SGD step

xH = by Vf(xt)(6D)

Lemma

Assume f is Lipschitz smooth with constant L. Then,

FOEHY = 165) < (L = ) IV,

3 |
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An observation of SGD step

xFtl = xk — 'ykG(xk,ik) (SGD)

Lemma

Assume f is Lipschitz smooth with constant L. Then,

E[f(x*) — ()] < (L = m)EIIVFF)IP] + LAREIG(x", ik) = V£ (x*)]?]

. |
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An observation of SGD step

xFtl = xk — 'ykG(xk,ik) (SGD)

Lemma
Assume f is Lipschitz smooth with constant L. Then,

E[f(x*) — ()] < (L = m)EIIVFF)IP] + LAREIG(x", ik) = V£ (x*)]?]

e The first term dominates at the beginning and the variance in gradient will dominate
later (as if V£(x*) — 0).

e To ensure convergence, v, — 0. = Slow convergence!

Can we decrease the variance while using a constant step-size?

e Choose a stochastic gradient, s.t. E[||G(xk;z’k)||2] — 0.

. V
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Variance reduction techniques: SVRG

® Select the stochastic gradient V f;, , and compute a gradient estimate

v = Vi, (xF) = Vi, (%) + V(X),

where X is a good approximation of x*.

o As X — x* and x* — x*,

Vi, (xF) = Vi (%) + V(%) — 0.

o Therefore,

E[||V fi, (%) = Vi, (%) + VFF)II*] = 0.

. V
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Stochastic gradient algorithm with variance reduction

Stochastic gradient with variance reduction (SVRG) [9, 5]
1. Choose xY € RP as a starting point and v > 0 and ¢ € N ;.
2. Fors=0,1,2---, perform:

0. =%, V=ViX), x0=%

2b. For k=0,1,---q— 1, perform:

Pick iy, € {1,...,n} uniformly at random
v, =Vfi, x*) = Vfi, (x)+v (1)
X = x" — yryg,

~ 71 .
2c. Update x5t1 = L §797 " «3,
m 7=0

Common features

> The SVRG method uses a multistage scheme to reduce the variance of the
stochastic gradient ry where x* and x* tend to x.

> Learning rate v does not necessarily tend to 0.

> Each stage, SVRG uses n 4+ 2¢g component gradient evaluations: n for the full
gradient at the beginning of each stage, and 2q for each of the g stochastic
gradient steps.
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Convergence analysis

Assumption A5.

(i) f is p-strongly convex

(ii) The learning rate 0 < v < 1/(4Lmax), where Lmax = maxi<j<n Lj.
(iii) g is large enough such that

1 4vLmax(qg+ 1) <1

K = o
,U'Y(l - 4'YLmax)q (1 - 4'YLmax)q

Theorem

Assumptions:
> The sequence {;S}Iczo is generated by SVRG.
> Assumption A5 is satisfied.

Conclusion: Linear convergence is obtained:

Ef(x*) — f(x*) < 55 (F(x0) — f(x*)).

. |
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Choice of 7 and ¢, and complexity

Chose « and ¢ such that x € (0,1):

For example
v =0.1/Lmax,q = 100(Lmax/p1) = k=~ 5/6.

Complexity

Ef(<°) — f(x*) <&, when s > log((f(x0) — f(x*))/e)/ log(x~")

Since at each stage needs n + 2q component gradient evaluations, with
q = O(Lmax/p), we get the overall complexity is

O((n+ Lunwe /1) 08(1/9)).

-
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Variance reduction techniques: SAGA

Stochastic Average Gradient (SAGA) [6]

2. For k=0,1... perform:
2a. pick iy, € {1,... n} uniformly at random

other entries the same.
2c. Tk—vfzk( ) szk( i )+ Z ij )
3. xkHl = xF — ~ry

1a. Choose XV = x? € RP, Vi, ¢ € N and stepsize v > 0.
1b. Store Vfl( %?) in a table data-structure with length n.

2b. Take ﬁ’fjl = x*, store Vf;, (X k+1) in the table and leave

Recipe:

In each iteration:
> Store last gradient evaluated at each datapoint.
> Previous gradient for datapoint j is V f; (i?)

> Perform SG-iterations with the following stochastic gradient

rr = Vi, (<) = Vi (% Z V(%
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Variance reduction techniques: SAGA
e Select the stochastic gradient ry as

k

where, at each iteration, X is updated as icik = xF and 5{? stays the same for j # if.

oAsi? — x* and xF — x*,

Vfi, (F) = Vi (% ZWJ

e Therefore,

1 n
B[V i, o) = Vi (=5 + =Y VHEDIP] =0
j=1

3 |
e ail  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 41 L]




Convergence of SAGA

7= min 1) = iémx)}.

Theorem (Convergence of SAGA [6])

Suppose that f is p-strongly convex and that the stepsize is v = m with
n
=1—-—-7<1,
P 2(un + L)
C =[x —x** + [F(x%) = (Vf(x*),x° = x*) = f(x*)]
un+ L

Then
E[|lx* — x*||*] < p*C.

e Allows the constant step-size.

e Obtains linear rate convergence.

. V
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SVRG vs SAGA

e SVRG update: _
v, = Vfi, (xF) = V fi, (x) + V(%)
xkt1 = xk — 41y,

o SAGA update:

{ rp = Vi, () = Vi, (RE) + 2300 V(EE)

xFH1 = xk — 41y,

SVRG SAGA
Storage of gradients no yes
Epoch-base yes no
Parameters stepsize & epoch lengths | stepsize
Gradient evaluations per step at least 2 1

Table: Comparisons of SVRG and SAGA [6]

3 |
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Taxonomy of algorithms

7 o= min { 1) = iéfj(x)}.

o f(x)= %Z;;l fj(x): p-strongly convex with L-Lipschitz continuous gradient.

Gradient descent

SVRG/SAGA SGM

Linear

Linear Sublinear

Table: Rate of convergence.

o x=1L/uand so =8kn(v2a(n—1)+8k)"! for 0 < a < 1/8.

SVRG/SAGA AccGrad SGM
O((n + k) log(l/e)) | O((nx)log(1/e)) | 1/e
Table: Complexity to obtain e-solution.
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*Another way of parsing data

1
Example (Least squares): min {f(x) = 5||Ax —b|2:x¢ Rp}
xX

Using a subset of rows

We have mainly focused on using a subset of rows instead of the full data at each
iteration.

This way, we compute an unbiased estimate G(x, i) of the gradient using
> a subset of data points: (ay, , b, ),
> and the whole decision variable x*:
G(x*, i) = ag;((aiTk,xk) —by,).
Estimate G(x*,iy) is dense, so we update the whole decision variable.

Next: Using a subset of columns.

. V
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*Another way of parsing data
1
Example (Least squares): min {f(x) = 5||Ax —bl2:x¢€ ]Rp}

T b T

INEEEEEN =

Using a subset of columns

Denote the standard basis vectors by e;, and the corresponding directional derivatives
by V;. Let a; represent the ith column of matrix A. Consider the following unbiased
estimate:
k k k
G(x",ir) = pVi, f(x7)ei), = play,, ai, x;, —b)ey,.
This way, we compute an unbiased estimate G(x*, i) of the gradient using
> a subset of columns (a;, ) and the whole measurement vector b,

> and only the chosen coordinates of decision variable: xfk.

Estimate G(xF*,iy) is sparse, only coordinates chosen by ij, are nonzero.
Hence, we update these coordinates only.

i V
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